File size: 3,252 Bytes
bb95a25
d3ffde3
 
bb95a25
d3ffde3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27bf67c
d3ffde3
 
27bf67c
bb95a25
d3ffde3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27bf67c
d3ffde3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---

language:
- sk
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- robust-speech-event
- xlsr-fine-tuning-week
datasets:
- common_voice
model-index:
- name: Slovak comodoro Wav2Vec2 XLSR 300M CV8
  results:
  - task: 
      name: Automatic Speech Recognition 
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: sk
    metrics:
       - name: Test WER
         type: wer
         value: 59.5
       - name: Test CER
         type: cer 
         value: 15.6
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xls-r-300m-cs-cv8

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice 8.0 dataset.

It achieves the following results on the evaluation set:

- Wer: 55.2

- Cer: 14.4



## Usage



The model can be used directly (without a language model) as follows:



```python

import torch

import torchaudio

from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "sk", split="test[:2%]")



processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-sk-cv8")
model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-sk-cv8")



resampler = torchaudio.transforms.Resample(48_000, 16_000)



# Preprocessing the datasets.

# We need to read the aduio files as arrays

def speech_file_to_array_fn(batch):

	speech_array, sampling_rate = torchaudio.load(batch["path"])

	batch["speech"] = resampler(speech_array).squeeze().numpy()
	return batch


test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():

	logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)



print("Prediction:", processor.batch_decode(predicted_ids))

print("Reference:", test_dataset[:2]["sentence"])
```



## Evaluation



The model can be evaluated using the attached `eval.py` script:

```
python eval.py --model_id comodoro/wav2vec2-xls-r-300m-sk-cv8 --dataset mozilla-foundation/common_voice_8_0 --split test --config sk
```



## Training and evaluation data



The Common Voice 8.0 `train` and `validation` datasets were used for training



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:



- learning_rate: 7e-4

- train_batch_size: 32

- eval_batch_size: 8

- seed: 42

- gradient_accumulation_steps: 20

- total_train_batch_size: 640

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_steps: 500

- num_epochs: 50

- mixed_precision_training: Native AMP



### Framework versions



- Transformers 4.16.0.dev0

- Pytorch 1.10.1+cu102

- Datasets 1.17.1.dev0

- Tokenizers 0.11.0