comodoro commited on
Commit
d3ffde3
·
1 Parent(s): 3b43761

Very early results

Browse files
Files changed (3) hide show
  1. README.md +107 -0
  2. config.json +108 -0
  3. eval.py +161 -0
README.md CHANGED
@@ -1,3 +1,110 @@
1
  ---
 
 
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - sk
4
  license: apache-2.0
5
+ tags:
6
+ - automatic-speech-recognition
7
+ - mozilla-foundation/common_voice_8_0
8
+ - robust-speech-event
9
+ - xlsr-fine-tuning-week
10
+ datasets:
11
+ - common_voice
12
+ model-index:
13
+ - name: Slovak comodoro Wav2Vec2 XLSR 300M CV8
14
+ results:
15
+ - task:
16
+ name: Automatic Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: Common Voice 8
20
+ type: mozilla-foundation/common_voice_8_0
21
+ args: sk
22
+ metrics:
23
+ - name: Test WER
24
+ type: wer
25
+ value: 55.2
26
+ - name: Test CER
27
+ type: cer
28
+ value: 14.4
29
  ---
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ # wav2vec2-xls-r-300m-cs-cv8
34
+
35
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice 8.0 dataset.
36
+ It achieves the following results on the evaluation set:
37
+ - Wer: 55.2
38
+ - Cer: 14.4
39
+
40
+ ## Usage
41
+
42
+ The model can be used directly (without a language model) as follows:
43
+
44
+ ```python
45
+ import torch
46
+ import torchaudio
47
+ from datasets import load_dataset
48
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
49
+
50
+ test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "sk", split="test[:2%]")
51
+
52
+ processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-sk-cv8")
53
+ model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-sk-cv8")
54
+
55
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
56
+
57
+ # Preprocessing the datasets.
58
+ # We need to read the aduio files as arrays
59
+ def speech_file_to_array_fn(batch):
60
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
61
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
62
+ return batch
63
+
64
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
65
+ inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
66
+
67
+ with torch.no_grad():
68
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
69
+
70
+ predicted_ids = torch.argmax(logits, dim=-1)
71
+
72
+ print("Prediction:", processor.batch_decode(predicted_ids))
73
+ print("Reference:", test_dataset[:2]["sentence"])
74
+ ```
75
+
76
+ ## Evaluation
77
+
78
+ The model can be evaluated using the attached `eval.py` script:
79
+ ```
80
+ python eval.py --model_id comodoro/wav2vec2-xls-r-300m-sk-cv8 --dataset mozilla-foundation/common-voice_8_0 --split test --config sk
81
+ ```
82
+
83
+ ## Training and evaluation data
84
+
85
+ The Common Voice 8.0 `train` and `validation` datasets were used for training
86
+
87
+ ## Training procedure
88
+
89
+ ### Training hyperparameters
90
+
91
+ The following hyperparameters were used during training:
92
+
93
+ - learning_rate: 7e-4
94
+ - train_batch_size: 32
95
+ - eval_batch_size: 8
96
+ - seed: 42
97
+ - gradient_accumulation_steps: 20
98
+ - total_train_batch_size: 640
99
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
100
+ - lr_scheduler_type: linear
101
+ - lr_scheduler_warmup_steps: 500
102
+ - num_epochs: 50
103
+ - mixed_precision_training: Native AMP
104
+
105
+ ### Framework versions
106
+
107
+ - Transformers 4.16.0.dev0
108
+ - Pytorch 1.10.1+cu102
109
+ - Datasets 1.17.1.dev0
110
+ - Tokenizers 0.11.0
config.json ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-xls-r-300m",
3
+ "activation_dropout": 0.0,
4
+ "adapter_kernel_size": 3,
5
+ "adapter_stride": 2,
6
+ "add_adapter": false,
7
+ "apply_spec_augment": true,
8
+ "architectures": [
9
+ "Wav2Vec2ForCTC"
10
+ ],
11
+ "attention_dropout": 0.1,
12
+ "bos_token_id": 1,
13
+ "classifier_proj_size": 256,
14
+ "codevector_dim": 768,
15
+ "contrastive_logits_temperature": 0.1,
16
+ "conv_bias": true,
17
+ "conv_dim": [
18
+ 512,
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512
25
+ ],
26
+ "conv_kernel": [
27
+ 10,
28
+ 3,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 2,
33
+ 2
34
+ ],
35
+ "conv_stride": [
36
+ 5,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2
43
+ ],
44
+ "ctc_loss_reduction": "mean",
45
+ "ctc_zero_infinity": false,
46
+ "diversity_loss_weight": 0.1,
47
+ "do_stable_layer_norm": true,
48
+ "eos_token_id": 2,
49
+ "feat_extract_activation": "gelu",
50
+ "feat_extract_dropout": 0.0,
51
+ "feat_extract_norm": "layer",
52
+ "feat_proj_dropout": 0.0,
53
+ "feat_quantizer_dropout": 0.0,
54
+ "final_dropout": 0.0,
55
+ "gradient_checkpointing": false,
56
+ "hidden_act": "gelu",
57
+ "hidden_dropout": 0.1,
58
+ "hidden_size": 1024,
59
+ "initializer_range": 0.02,
60
+ "intermediate_size": 4096,
61
+ "layer_norm_eps": 1e-05,
62
+ "layerdrop": 0.1,
63
+ "mask_feature_length": 10,
64
+ "mask_feature_min_masks": 0,
65
+ "mask_feature_prob": 0.0,
66
+ "mask_time_length": 10,
67
+ "mask_time_min_masks": 2,
68
+ "mask_time_prob": 0.05,
69
+ "model_type": "wav2vec2",
70
+ "num_adapter_layers": 3,
71
+ "num_attention_heads": 16,
72
+ "num_codevector_groups": 2,
73
+ "num_codevectors_per_group": 320,
74
+ "num_conv_pos_embedding_groups": 16,
75
+ "num_conv_pos_embeddings": 128,
76
+ "num_feat_extract_layers": 7,
77
+ "num_hidden_layers": 24,
78
+ "num_negatives": 100,
79
+ "output_hidden_size": 1024,
80
+ "pad_token_id": 46,
81
+ "proj_codevector_dim": 768,
82
+ "tdnn_dilation": [
83
+ 1,
84
+ 2,
85
+ 3,
86
+ 1,
87
+ 1
88
+ ],
89
+ "tdnn_dim": [
90
+ 512,
91
+ 512,
92
+ 512,
93
+ 512,
94
+ 1500
95
+ ],
96
+ "tdnn_kernel": [
97
+ 5,
98
+ 3,
99
+ 3,
100
+ 1,
101
+ 1
102
+ ],
103
+ "torch_dtype": "float32",
104
+ "transformers_version": "4.16.0.dev0",
105
+ "use_weighted_layer_sum": false,
106
+ "vocab_size": 49,
107
+ "xvector_output_dim": 512
108
+ }
eval.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ from datasets import load_dataset, load_metric, Audio, Dataset
3
+ from transformers import pipeline, AutoFeatureExtractor
4
+ import re
5
+ import argparse
6
+ import unicodedata
7
+ from typing import Dict
8
+
9
+
10
+ def log_results(result: Dataset, args: Dict[str, str]):
11
+ """ DO NOT CHANGE. This function computes and logs the result metrics. """
12
+
13
+ log_outputs = args.log_outputs
14
+ dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
15
+
16
+ # load metric
17
+ wer = load_metric("wer")
18
+ cer = load_metric("cer")
19
+
20
+ # compute metrics
21
+ wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
22
+ cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
23
+
24
+ # print & log results
25
+ result_str = (
26
+ f"WER: {wer_result}\n"
27
+ f"CER: {cer_result}"
28
+ )
29
+ print(result_str)
30
+
31
+ with open(f"{dataset_id}_eval_results.txt", "w") as f:
32
+ f.write(result_str)
33
+
34
+ # log all results in text file. Possibly interesting for analysis
35
+ if log_outputs is not None:
36
+ pred_file = f"log_{dataset_id}_predictions.txt"
37
+ target_file = f"log_{dataset_id}_targets.txt"
38
+
39
+ with open(pred_file, "w") as p, open(target_file, "w") as t:
40
+
41
+ # mapping function to write output
42
+ def write_to_file(batch, i):
43
+ p.write(f"{i}" + "\n")
44
+ p.write(batch["prediction"] + "\n")
45
+ t.write(f"{i}" + "\n")
46
+ t.write(batch["target"] + "\n")
47
+
48
+ result.map(write_to_file, with_indices=True)
49
+
50
+
51
+ def normalize_text(text: str) -> str:
52
+ """ DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """
53
+
54
+
55
+ CHARS = {
56
+ 'ü': 'ue',
57
+ 'ö': 'oe',
58
+ 'ï': 'i',
59
+ 'ë': 'e',
60
+ 'ã': 'a',
61
+ 'à': 'á',
62
+ 'ø': 'o',
63
+ 'è': 'é',
64
+ 'ê': 'é',
65
+ 'å': 'ó',
66
+ 'î': 'i',
67
+ 'ñ': 'ň',
68
+ 'ç': 's',
69
+ 'ż': 'ž',
70
+ 'ł': 'w',
71
+ 'ć': 'č',
72
+ 'þ': 't',
73
+ 'ß': 'ss',
74
+ 'ę': 'en',
75
+ 'ą': 'an',
76
+ 'æ': 'ae',
77
+ }
78
+
79
+ def replace_chars(sentence):
80
+ result = ''
81
+ for ch in sentence:
82
+ new = CHARS[ch] if ch in CHARS else ch
83
+ result += new
84
+
85
+ return result
86
+
87
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\/\"\“\„\%\”\�\–\'\`\«\»\—\’\…\³]'
88
+
89
+ text = text.lower()
90
+ # normalize non-standard (stylized) unicode characters
91
+ text = unicodedata.normalize('NFKC', text)
92
+ # remove punctuation
93
+ text = re.sub(chars_to_ignore_regex, "", text)
94
+ batch["sentence"] = replace_chars(batch['sentence'])
95
+
96
+ # Let's also make sure we split on all kinds of newlines, spaces, etc...
97
+ text = " ".join(text.split())
98
+
99
+ return text
100
+
101
+
102
+ def main(args):
103
+ # load dataset
104
+ dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
105
+
106
+ # for testing: only process the first two examples as a test
107
+ # dataset = dataset.select(range(10))
108
+
109
+ # load processor
110
+ feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
111
+ sampling_rate = feature_extractor.sampling_rate
112
+
113
+ # resample audio
114
+ dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
115
+
116
+ # load eval pipeline
117
+ asr = pipeline("automatic-speech-recognition", model=args.model_id)
118
+
119
+ # map function to decode audio
120
+ def map_to_pred(batch):
121
+ prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
122
+
123
+ batch["prediction"] = prediction["text"]
124
+ batch["target"] = normalize_text(batch["sentence"])
125
+ return batch
126
+
127
+ # run inference on all examples
128
+ result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
129
+
130
+ # compute and log_results
131
+ # do not change function below
132
+ log_results(result, args)
133
+
134
+
135
+ if __name__ == "__main__":
136
+ parser = argparse.ArgumentParser()
137
+
138
+ parser.add_argument(
139
+ "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
140
+ )
141
+ parser.add_argument(
142
+ "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
143
+ )
144
+ parser.add_argument(
145
+ "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
146
+ )
147
+ parser.add_argument(
148
+ "--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
149
+ )
150
+ parser.add_argument(
151
+ "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
152
+ )
153
+ parser.add_argument(
154
+ "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
155
+ )
156
+ parser.add_argument(
157
+ "--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
158
+ )
159
+ args = parser.parse_args()
160
+
161
+ main(args)