bottleneckBERTsmall
This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.7726
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.469 | 0.2565 | 500 | 2.3210 |
2.308 | 0.5131 | 1000 | 2.1745 |
2.2322 | 0.7696 | 1500 | 2.0982 |
2.1424 | 1.0262 | 2000 | 2.0600 |
2.1064 | 1.2827 | 2500 | 2.0712 |
2.1129 | 1.5393 | 3000 | 2.0012 |
2.0676 | 1.7958 | 3500 | 1.9624 |
1.9941 | 2.0523 | 4000 | 1.9267 |
1.9514 | 2.3089 | 4500 | 1.9082 |
1.9382 | 2.5654 | 5000 | 1.8936 |
1.8954 | 2.8220 | 5500 | 1.8489 |
1.8913 | 3.0785 | 6000 | 1.8282 |
1.8724 | 3.3350 | 6500 | 1.8323 |
1.8135 | 3.5916 | 7000 | 1.8146 |
1.8178 | 3.8481 | 7500 | 1.7984 |
1.7824 | 4.1047 | 8000 | 1.7734 |
1.7669 | 4.3612 | 8500 | 1.7677 |
1.7687 | 4.6178 | 9000 | 1.7556 |
1.7572 | 4.8743 | 9500 | 1.7726 |
Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 61
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for colaguo/bottleneckBERTsmall
Base model
google-bert/bert-base-uncased