SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l-v2.0 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l-v2.0
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("coffeepowered/arctic-l-enhanced")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
json
- Dataset: json
- Columns:
sentence1
,sentence2
,score
, andsplit
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
json
- Dataset: json
- Columns:
sentence1
,sentence2
,score
, andsplit
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepslearning_rate
: 4.000000000000001e-06max_steps
: 13938warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 4.000000000000001e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: 13938lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0007 | 10 | 0.1359 | - |
0.0014 | 20 | 0.1202 | - |
0.0022 | 30 | 0.1314 | - |
0.0029 | 40 | 0.1302 | - |
0.0036 | 50 | 0.1158 | - |
0.0043 | 60 | 0.1158 | - |
0.0050 | 70 | 0.1114 | - |
0.0057 | 80 | 0.1316 | - |
0.0065 | 90 | 0.133 | - |
0.0072 | 100 | 0.0958 | - |
0.0079 | 110 | 0.0973 | - |
0.0086 | 120 | 0.0949 | - |
0.0093 | 130 | 0.0892 | - |
0.0100 | 140 | 0.0867 | - |
0.0108 | 150 | 0.0717 | 0.0712 |
0.0115 | 160 | 0.0762 | - |
0.0122 | 170 | 0.0828 | - |
0.0129 | 180 | 0.0775 | - |
0.0136 | 190 | 0.0614 | - |
0.0143 | 200 | 0.0748 | - |
0.0151 | 210 | 0.0545 | - |
0.0158 | 220 | 0.0725 | - |
0.0165 | 230 | 0.0627 | - |
0.0172 | 240 | 0.0612 | - |
0.0179 | 250 | 0.0508 | - |
0.0187 | 260 | 0.0592 | - |
0.0194 | 270 | 0.0489 | - |
0.0201 | 280 | 0.0545 | - |
0.0208 | 290 | 0.0598 | - |
0.0215 | 300 | 0.0641 | 0.0566 |
0.0222 | 310 | 0.0554 | - |
0.0230 | 320 | 0.0523 | - |
0.0237 | 330 | 0.0568 | - |
0.0244 | 340 | 0.0594 | - |
0.0251 | 350 | 0.0488 | - |
0.0258 | 360 | 0.06 | - |
0.0265 | 370 | 0.0737 | - |
0.0273 | 380 | 0.0565 | - |
0.0280 | 390 | 0.0456 | - |
0.0287 | 400 | 0.0489 | - |
0.0294 | 410 | 0.0478 | - |
0.0301 | 420 | 0.0481 | - |
0.0309 | 430 | 0.0541 | - |
0.0316 | 440 | 0.0581 | - |
0.0323 | 450 | 0.0549 | 0.0578 |
0.0330 | 460 | 0.042 | - |
0.0337 | 470 | 0.0451 | - |
0.0344 | 480 | 0.0537 | - |
0.0352 | 490 | 0.0487 | - |
0.0359 | 500 | 0.0444 | - |
0.0366 | 510 | 0.0443 | - |
0.0373 | 520 | 0.0418 | - |
0.0380 | 530 | 0.0447 | - |
0.0387 | 540 | 0.0453 | - |
0.0395 | 550 | 0.0465 | - |
0.0402 | 560 | 0.0623 | - |
0.0409 | 570 | 0.0507 | - |
0.0416 | 580 | 0.0428 | - |
0.0423 | 590 | 0.0494 | - |
0.0430 | 600 | 0.0407 | 0.0519 |
0.0438 | 610 | 0.0452 | - |
0.0445 | 620 | 0.0439 | - |
0.0452 | 630 | 0.0534 | - |
0.0459 | 640 | 0.0422 | - |
0.0466 | 650 | 0.0514 | - |
0.0474 | 660 | 0.0406 | - |
0.0481 | 670 | 0.0428 | - |
0.0488 | 680 | 0.0346 | - |
0.0495 | 690 | 0.0485 | - |
0.0502 | 700 | 0.0549 | - |
0.0509 | 710 | 0.0399 | - |
0.0517 | 720 | 0.0362 | - |
0.0524 | 730 | 0.0507 | - |
0.0531 | 740 | 0.0434 | - |
0.0538 | 750 | 0.0363 | 0.0553 |
0.0545 | 760 | 0.0426 | - |
0.0552 | 770 | 0.0375 | - |
0.0560 | 780 | 0.0501 | - |
0.0567 | 790 | 0.043 | - |
0.0574 | 800 | 0.0476 | - |
0.0581 | 810 | 0.037 | - |
0.0588 | 820 | 0.0317 | - |
0.0595 | 830 | 0.0387 | - |
0.0603 | 840 | 0.0348 | - |
0.0610 | 850 | 0.0379 | - |
0.0617 | 860 | 0.0506 | - |
0.0624 | 870 | 0.0419 | - |
0.0631 | 880 | 0.0431 | - |
0.0639 | 890 | 0.0478 | - |
0.0646 | 900 | 0.0394 | 0.0571 |
0.0653 | 910 | 0.0334 | - |
0.0660 | 920 | 0.0384 | - |
0.0667 | 930 | 0.0381 | - |
0.0674 | 940 | 0.0343 | - |
0.0682 | 950 | 0.0355 | - |
0.0689 | 960 | 0.0384 | - |
0.0696 | 970 | 0.0352 | - |
0.0703 | 980 | 0.0479 | - |
0.0710 | 990 | 0.0362 | - |
0.0717 | 1000 | 0.0357 | - |
0.0725 | 1010 | 0.0414 | - |
0.0732 | 1020 | 0.0346 | - |
0.0739 | 1030 | 0.039 | - |
0.0746 | 1040 | 0.0317 | - |
0.0753 | 1050 | 0.0502 | 0.0523 |
0.0761 | 1060 | 0.0407 | - |
0.0768 | 1070 | 0.0377 | - |
0.0775 | 1080 | 0.0404 | - |
0.0782 | 1090 | 0.0297 | - |
0.0789 | 1100 | 0.0344 | - |
0.0796 | 1110 | 0.0277 | - |
0.0804 | 1120 | 0.0453 | - |
0.0811 | 1130 | 0.0469 | - |
0.0818 | 1140 | 0.044 | - |
0.0825 | 1150 | 0.0339 | - |
0.0832 | 1160 | 0.0331 | - |
0.0839 | 1170 | 0.0327 | - |
0.0847 | 1180 | 0.0445 | - |
0.0854 | 1190 | 0.0392 | - |
0.0861 | 1200 | 0.048 | 0.0531 |
0.0868 | 1210 | 0.0375 | - |
0.0875 | 1220 | 0.0311 | - |
0.0882 | 1230 | 0.037 | - |
0.0890 | 1240 | 0.0369 | - |
0.0897 | 1250 | 0.0398 | - |
0.0904 | 1260 | 0.0363 | - |
0.0911 | 1270 | 0.0425 | - |
0.0918 | 1280 | 0.0355 | - |
0.0926 | 1290 | 0.0362 | - |
0.0933 | 1300 | 0.0354 | - |
0.0940 | 1310 | 0.0252 | - |
0.0947 | 1320 | 0.03 | - |
0.0954 | 1330 | 0.03 | - |
0.0961 | 1340 | 0.0218 | - |
0.0969 | 1350 | 0.0248 | 0.0448 |
0.0976 | 1360 | 0.0287 | - |
0.0983 | 1370 | 0.0322 | - |
0.0990 | 1380 | 0.0359 | - |
0.0997 | 1390 | 0.0287 | - |
0.1004 | 1400 | 0.034 | - |
0.1012 | 1410 | 0.0305 | - |
0.1019 | 1420 | 0.0241 | - |
0.1026 | 1430 | 0.0227 | - |
0.1033 | 1440 | 0.0279 | - |
0.1040 | 1450 | 0.0298 | - |
0.1047 | 1460 | 0.0382 | - |
0.1055 | 1470 | 0.0269 | - |
0.1062 | 1480 | 0.0243 | - |
0.1069 | 1490 | 0.0266 | - |
0.1076 | 1500 | 0.016 | 0.0456 |
0.1083 | 1510 | 0.0233 | - |
0.1091 | 1520 | 0.0247 | - |
0.1098 | 1530 | 0.0233 | - |
0.1105 | 1540 | 0.0214 | - |
0.1112 | 1550 | 0.0229 | - |
0.1119 | 1560 | 0.0145 | - |
0.1126 | 1570 | 0.0187 | - |
0.1134 | 1580 | 0.0231 | - |
0.1141 | 1590 | 0.0268 | - |
0.1148 | 1600 | 0.027 | - |
0.1155 | 1610 | 0.0354 | - |
0.1162 | 1620 | 0.0398 | - |
0.1169 | 1630 | 0.0431 | - |
0.1177 | 1640 | 0.0391 | - |
0.1184 | 1650 | 0.056 | 0.0422 |
0.1191 | 1660 | 0.0394 | - |
0.1198 | 1670 | 0.0338 | - |
0.1205 | 1680 | 0.0417 | - |
0.1213 | 1690 | 0.0479 | - |
0.1220 | 1700 | 0.0348 | - |
0.1227 | 1710 | 0.0366 | - |
0.1234 | 1720 | 0.0335 | - |
0.1241 | 1730 | 0.0367 | - |
0.1248 | 1740 | 0.0355 | - |
0.1256 | 1750 | 0.0319 | - |
0.1263 | 1760 | 0.0324 | - |
0.1270 | 1770 | 0.0345 | - |
0.1277 | 1780 | 0.0352 | - |
0.1284 | 1790 | 0.0362 | - |
0.1291 | 1800 | 0.0319 | 0.0388 |
0.1299 | 1810 | 0.0381 | - |
0.1306 | 1820 | 0.0368 | - |
0.1313 | 1830 | 0.0318 | - |
0.1320 | 1840 | 0.0296 | - |
0.1327 | 1850 | 0.0331 | - |
0.1334 | 1860 | 0.0381 | - |
0.1342 | 1870 | 0.0237 | - |
0.1349 | 1880 | 0.0284 | - |
0.1356 | 1890 | 0.0353 | - |
0.1363 | 1900 | 0.0408 | - |
0.1370 | 1910 | 0.0277 | - |
0.1378 | 1920 | 0.0268 | - |
0.1385 | 1930 | 0.0348 | - |
0.1392 | 1940 | 0.0348 | - |
0.1399 | 1950 | 0.0269 | 0.0351 |
0.1406 | 1960 | 0.0317 | - |
0.1413 | 1970 | 0.0375 | - |
0.1421 | 1980 | 0.0321 | - |
0.1428 | 1990 | 0.0302 | - |
0.1435 | 2000 | 0.0411 | - |
0.1442 | 2010 | 0.0329 | - |
0.1449 | 2020 | 0.0246 | - |
0.1456 | 2030 | 0.0288 | - |
0.1464 | 2040 | 0.0297 | - |
0.1471 | 2050 | 0.0285 | - |
0.1478 | 2060 | 0.0326 | - |
0.1485 | 2070 | 0.035 | - |
0.1492 | 2080 | 0.0208 | - |
0.1499 | 2090 | 0.0209 | - |
0.1507 | 2100 | 0.0303 | 0.0364 |
0.1514 | 2110 | 0.028 | - |
0.1521 | 2120 | 0.0366 | - |
0.1528 | 2130 | 0.033 | - |
0.1535 | 2140 | 0.0353 | - |
0.1543 | 2150 | 0.0292 | - |
0.1550 | 2160 | 0.0202 | - |
0.1557 | 2170 | 0.0233 | - |
0.1564 | 2180 | 0.0346 | - |
0.1571 | 2190 | 0.0309 | - |
0.1578 | 2200 | 0.0241 | - |
0.1586 | 2210 | 0.0317 | - |
0.1593 | 2220 | 0.0331 | - |
0.1600 | 2230 | 0.0273 | - |
0.1607 | 2240 | 0.0219 | - |
0.1614 | 2250 | 0.0256 | 0.0338 |
0.1621 | 2260 | 0.024 | - |
0.1629 | 2270 | 0.0216 | - |
0.1636 | 2280 | 0.0253 | - |
0.1643 | 2290 | 0.0271 | - |
0.1650 | 2300 | 0.0336 | - |
0.1657 | 2310 | 0.0273 | - |
0.1665 | 2320 | 0.0267 | - |
0.1672 | 2330 | 0.0292 | - |
0.1679 | 2340 | 0.0269 | - |
0.1686 | 2350 | 0.0342 | - |
0.1693 | 2360 | 0.0361 | - |
0.1700 | 2370 | 0.0224 | - |
0.1708 | 2380 | 0.016 | - |
0.1715 | 2390 | 0.0209 | - |
0.1722 | 2400 | 0.0162 | 0.0329 |
0.1729 | 2410 | 0.019 | - |
0.1736 | 2420 | 0.0181 | - |
0.1743 | 2430 | 0.0332 | - |
0.1751 | 2440 | 0.0189 | - |
0.1758 | 2450 | 0.0292 | - |
0.1765 | 2460 | 0.0193 | - |
0.1772 | 2470 | 0.024 | - |
0.1779 | 2480 | 0.0245 | - |
0.1786 | 2490 | 0.02 | - |
0.1794 | 2500 | 0.0187 | - |
0.1801 | 2510 | 0.0224 | - |
0.1808 | 2520 | 0.028 | - |
0.1815 | 2530 | 0.0219 | - |
0.1822 | 2540 | 0.0212 | - |
0.1830 | 2550 | 0.0208 | 0.0354 |
0.1837 | 2560 | 0.0299 | - |
0.1844 | 2570 | 0.0208 | - |
0.1851 | 2580 | 0.0271 | - |
0.1858 | 2590 | 0.0146 | - |
0.1865 | 2600 | 0.0163 | - |
0.1873 | 2610 | 0.0149 | - |
0.1880 | 2620 | 0.0145 | - |
0.1887 | 2630 | 0.0196 | - |
0.1894 | 2640 | 0.0252 | - |
0.1901 | 2650 | 0.0173 | - |
0.1908 | 2660 | 0.0202 | - |
0.1916 | 2670 | 0.0171 | - |
0.1923 | 2680 | 0.023 | - |
0.1930 | 2690 | 0.02 | - |
0.1937 | 2700 | 0.0171 | 0.0387 |
0.1944 | 2710 | 0.0239 | - |
0.1951 | 2720 | 0.0261 | - |
0.1959 | 2730 | 0.0197 | - |
0.1966 | 2740 | 0.0195 | - |
0.1973 | 2750 | 0.0132 | - |
0.1980 | 2760 | 0.0226 | - |
0.1987 | 2770 | 0.0172 | - |
0.1995 | 2780 | 0.0214 | - |
0.2002 | 2790 | 0.0173 | - |
0.2009 | 2800 | 0.0179 | - |
0.2016 | 2810 | 0.0184 | - |
0.2023 | 2820 | 0.0162 | - |
0.2030 | 2830 | 0.0126 | - |
0.2038 | 2840 | 0.0188 | - |
0.2045 | 2850 | 0.0177 | 0.0385 |
0.2052 | 2860 | 0.0153 | - |
0.2059 | 2870 | 0.0137 | - |
0.2066 | 2880 | 0.0174 | - |
0.2073 | 2890 | 0.0148 | - |
0.2081 | 2900 | 0.0194 | - |
0.2088 | 2910 | 0.0133 | - |
0.2095 | 2920 | 0.0152 | - |
0.2102 | 2930 | 0.0179 | - |
0.2109 | 2940 | 0.0187 | - |
0.2117 | 2950 | 0.0161 | - |
0.2124 | 2960 | 0.0185 | - |
0.2131 | 2970 | 0.0151 | - |
0.2138 | 2980 | 0.0194 | - |
0.2145 | 2990 | 0.0179 | - |
0.2152 | 3000 | 0.0115 | 0.0434 |
0.2160 | 3010 | 0.0183 | - |
0.2167 | 3020 | 0.0168 | - |
0.2174 | 3030 | 0.0137 | - |
0.2181 | 3040 | 0.0196 | - |
0.2188 | 3050 | 0.0145 | - |
0.2195 | 3060 | 0.0164 | - |
0.2203 | 3070 | 0.0132 | - |
0.2210 | 3080 | 0.0133 | - |
0.2217 | 3090 | 0.0154 | - |
0.2224 | 3100 | 0.0145 | - |
0.2231 | 3110 | 0.0135 | - |
0.2238 | 3120 | 0.0143 | - |
0.2246 | 3130 | 0.0197 | - |
0.2253 | 3140 | 0.0163 | - |
0.2260 | 3150 | 0.017 | 0.0409 |
0.2267 | 3160 | 0.0257 | - |
0.2274 | 3170 | 0.0165 | - |
0.2282 | 3180 | 0.0189 | - |
0.2289 | 3190 | 0.0207 | - |
0.2296 | 3200 | 0.0179 | - |
0.2303 | 3210 | 0.0152 | - |
0.2310 | 3220 | 0.0179 | - |
0.2317 | 3230 | 0.0187 | - |
0.2325 | 3240 | 0.0189 | - |
0.2332 | 3250 | 0.0151 | - |
0.2339 | 3260 | 0.0137 | - |
0.2346 | 3270 | 0.0122 | - |
0.2353 | 3280 | 0.0134 | - |
0.2360 | 3290 | 0.0134 | - |
0.2368 | 3300 | 0.0162 | 0.0455 |
0.2375 | 3310 | 0.0142 | - |
0.2382 | 3320 | 0.0203 | - |
0.2389 | 3330 | 0.0148 | - |
0.2396 | 3340 | 0.0181 | - |
0.2404 | 3350 | 0.0178 | - |
0.2411 | 3360 | 0.018 | - |
0.2418 | 3370 | 0.012 | - |
0.2425 | 3380 | 0.0201 | - |
0.2432 | 3390 | 0.0193 | - |
0.2439 | 3400 | 0.013 | - |
0.2447 | 3410 | 0.0114 | - |
0.2454 | 3420 | 0.0184 | - |
0.2461 | 3430 | 0.0153 | - |
0.2468 | 3440 | 0.0172 | - |
0.2475 | 3450 | 0.0141 | 0.0458 |
0.2482 | 3460 | 0.0165 | - |
0.2490 | 3470 | 0.0174 | - |
0.2497 | 3480 | 0.0109 | - |
0.2504 | 3490 | 0.0177 | - |
0.2511 | 3500 | 0.0178 | - |
0.2518 | 3510 | 0.0101 | - |
0.2525 | 3520 | 0.0154 | - |
0.2533 | 3530 | 0.0204 | - |
0.2540 | 3540 | 0.0119 | - |
0.2547 | 3550 | 0.0158 | - |
0.2554 | 3560 | 0.0161 | - |
0.2561 | 3570 | 0.0116 | - |
0.2569 | 3580 | 0.0183 | - |
0.2576 | 3590 | 0.0125 | - |
0.2583 | 3600 | 0.0148 | 0.0475 |
0.2590 | 3610 | 0.0184 | - |
0.2597 | 3620 | 0.0169 | - |
0.2604 | 3630 | 0.0135 | - |
0.2612 | 3640 | 0.0138 | - |
0.2619 | 3650 | 0.0133 | - |
0.2626 | 3660 | 0.0148 | - |
0.2633 | 3670 | 0.0121 | - |
0.2640 | 3680 | 0.0119 | - |
0.2647 | 3690 | 0.0183 | - |
0.2655 | 3700 | 0.0178 | - |
0.2662 | 3710 | 0.0139 | - |
0.2669 | 3720 | 0.0171 | - |
0.2676 | 3730 | 0.0155 | - |
0.2683 | 3740 | 0.0173 | - |
0.2690 | 3750 | 0.0158 | 0.0488 |
0.2698 | 3760 | 0.0125 | - |
0.2705 | 3770 | 0.0137 | - |
0.2712 | 3780 | 0.0184 | - |
0.2719 | 3790 | 0.0117 | - |
0.2726 | 3800 | 0.0189 | - |
0.2734 | 3810 | 0.0163 | - |
0.2741 | 3820 | 0.0163 | - |
0.2748 | 3830 | 0.0212 | - |
0.2755 | 3840 | 0.0133 | - |
0.2762 | 3850 | 0.0168 | - |
0.2769 | 3860 | 0.0197 | - |
0.2777 | 3870 | 0.0184 | - |
0.2784 | 3880 | 0.017 | - |
0.2791 | 3890 | 0.0173 | - |
0.2798 | 3900 | 0.0165 | 0.0511 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.2.2
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 21
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for coffeepowered/arctic-l-enhanced
Base model
Snowflake/snowflake-arctic-embed-l-v2.0