piidetection
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0010
- Precision: 0.7422
- Recall: 0.8051
- F1: 0.7724
- Accuracy: 0.9998
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 171 | 0.0044 | 0.0 | 0.0 | 0.0 | 0.9993 |
No log | 2.0 | 342 | 0.0018 | 0.4084 | 0.3305 | 0.3653 | 0.9996 |
0.0316 | 3.0 | 513 | 0.0013 | 0.7661 | 0.5551 | 0.6437 | 0.9997 |
0.0316 | 4.0 | 684 | 0.0010 | 0.7258 | 0.7627 | 0.7438 | 0.9998 |
0.0316 | 5.0 | 855 | 0.0010 | 0.7991 | 0.7585 | 0.7783 | 0.9998 |
0.0008 | 6.0 | 1026 | 0.0009 | 0.7317 | 0.7627 | 0.7469 | 0.9998 |
0.0008 | 7.0 | 1197 | 0.0010 | 0.7449 | 0.7669 | 0.7557 | 0.9998 |
0.0008 | 8.0 | 1368 | 0.0011 | 0.7965 | 0.7627 | 0.7792 | 0.9998 |
0.0004 | 9.0 | 1539 | 0.0010 | 0.7520 | 0.7839 | 0.7676 | 0.9998 |
0.0004 | 10.0 | 1710 | 0.0010 | 0.7422 | 0.8051 | 0.7724 | 0.9998 |
Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for codeSlang/piidetection
Base model
distilbert/distilbert-base-uncased