Edit model card

BioLinkBERT-large-mnli-snli

This model is a fine-tuned version of BioLinkBERT-large on the GLUE MNLI and SNLI dataset.

The results are

Model Dataset Acc
Roberta-large-mnli MNLI dev mm 90.12
MNLI dev m 90.59
SNLI test 88.25
BioLinkBERT-large MNLI dev mm 33.56
MNLI dev m 33.18
SNLI test 32.66
BioLinkBERT-large-mnli-snli MNLI dev mm 85.75
MNLI dev m 85.30
SNLI test 89.82

The labels are "0": "entailment", "1": "neutral", "2": "contradiction"

For finetuning BioLinkBERT-large on

Training procedure

This model checkpoint is created by mnli.py with the following command:

CUDA_VISIBLE_DEVICES=0,1,2; python -m torch.distributed.launch \
    --nproc_per_node 3 mnli.py \
    --model_name_or_path michiyasunaga/BioLinkBERT-large --task_name mnli --add_snli \
    --do_train --max_seq_length 512 --fp16 --per_device_train_batch_size 16 --gradient_accumulation_steps 2 \
    --learning_rate 3e-5 --warmup_ratio 0.5 --num_train_epochs 10 \
    --output_dir ./biolinkbert_mnli_snli

which will create a folder biolinkbert_mnli_snli that contains the checkpoints.

And all checkpoints are evaluated on MNLI dev (mismatched and matched) & SNLI test by

name=biolinkbert_mnli_snli
root=$PWD/$name
mkdir $PWD/eval/$name
for run in $root/checkpoint-*; do
    step=$( echo $run | rg "checkpoint-(?P<step>\d+)" -or '$step')
    out="./eval/${name}/eval_$step"
    echo "eval of $step ---- save to $out";

    CUDA_VISIBLE_DEVICES=0; python mnli.py \
        --model_name_or_path $run --task_name mnli --add_snli \
        --do_eval --max_seq_length 512 --fp16 --report_to none \
        --per_device_eval_batch_size 8 --output_dir $out
done;

which will create a folder eval/biolinkbert_mnli_snli that contains evaluation results for MNLI dev & SNLI test.

The best checkpoint is then selected according to mnli-m:

import json
import os
from pathlib import Path
import pandas as pd
from rich.console import Console
from rich.table import Table

pwd = Path(__file__).parent.resolve()
name = "eval/biolinkbert_mnli"
results = []
for evalckpt in os.listdir(pwd / name):
    step = evalckpt.split("_")[1]
    with open(pwd / name / evalckpt / "all_results.json") as f:
        data = json.load(f)
    results.append([int(step), data["mnli-mm_eval_accuracy"] * 100, data["mnli_eval_accuracy"] * 100, data["snli-test_eval_accuracy"] * 100])
results = pd.DataFrame(results, columns=["step", "mnli-mm", "mnli-m", "snli"]).sort_values(by=['step'])
console = Console()
table = Table(name)
table.add_row(results.to_string(float_format=lambda _: '{:.3f}'.format(_)))
console.print(table)
best = results["mnli-m"].idxmax()
print(results.loc[best])

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.5
  • num_epochs: 10.0
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.22.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train cnut1648/biolinkbert-large-mnli-snli