File size: 3,744 Bytes
262ec26 a8f05ce 744cfe1 a8f05ce 744cfe1 262ec26 a8f05ce ce7cf93 cc77574 eeda8c0 744cfe1 eeda8c0 606fa26 cc77574 aa04cf5 dc6001b aa04cf5 cc77574 ce7cf93 cc77574 dc6001b 09a0ce7 ce7cf93 cc77574 ce7cf93 cc77574 dc6001b cc77574 dc6001b cc77574 dc6001b ce7cf93 cc77574 b4a1811 cc77574 c2fce10 cc77574 c2fce10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
---
license: wtfpl
datasets:
- HuggingFaceH4/no_robots
thumbnail: https://huggingface.co/clibrain/mamba-2.8b-chat-no_robots/resolve/main/mamba_no_robos-logo.png
pipeline_tag: text-generation
language:
- en
---
# MAMBA (2.8B) 🐍 fine-tuned on H4/no_robots dataset for chat / instruction
Model Card is still WIP!
<div style="text-align:center;width:250px;height:250px;">
<img src="https://huggingface.co/clibrain/mamba-2.8b-chat-no_robots/resolve/main/mamba_no_robos-logo.png" alt="mamba-no_robots logo"">
</div>
## Base model info
Mamba is a new state space model architecture showing promising performance on information-dense data such as language modeling, where previous subquadratic models fall short of Transformers.
It is based on the line of progress on [structured state space models](https://github.com/state-spaces/s4),
with an efficient hardware-aware design and implementation in the spirit of [FlashAttention](https://github.com/Dao-AILab/flash-attention).
## Dataset info
_Look Ma, an instruction dataset that wasn't generated by GPTs!_
### Dataset Description
- **Repository:** https://github.com/huggingface/alignment-handbook
- **Paper:**
- **Leaderboard:** https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
- **Point of Contact:** Lewis Tunstall
#### Dataset Summary
No Robots is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better. No Robots was modelled after the instruction dataset described in OpenAI's [InstructGPT paper](https://huggingface.co/papers/2203.02155), and is comprised mostly of single-turn instructions across the following categories:
| Category | Count |
|:-----------|--------:|
| Generation | 4560 |
| Open QA | 1240 |
| Brainstorm | 1120 |
| Chat | 850 |
| Rewrite | 660 |
| Summarize | 420 |
| Coding | 350 |
| Classify | 350 |
| Closed QA | 260 |
| Extract | 190 |
## Usage
```sh
pip install torch==2.1.0 transformers==4.35.0 causal-conv1d==1.0.0 mamba-ssm==1.0.1
```
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
CHAT_TEMPLATE_ID = "HuggingFaceH4/zephyr-7b-beta"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model_name = "clibrain/mamba-2.8b-chat-no_robots"
eos_token = "<|endoftext|>"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.eos_token = eos_token
tokenizer.pad_token = tokenizer.eos_token
tokenizer.chat_template = AutoTokenizer.from_pretrained(CHAT_TEMPLATE_ID).chat_template
model = MambaLMHeadModel.from_pretrained(
model_name, device=device, dtype=torch.float16)
messages = []
prompt = "Tell me 5 sites to visit in Spain"
messages.append(dict(role="user", content=prompt))
input_ids = tokenizer.apply_chat_template(
messages, return_tensors="pt", add_generation_prompt=True
).to(device)
out = model.generate(
input_ids=input_ids,
max_length=2000,
temperature=0.9,
top_p=0.7,
eos_token_id=tokenizer.eos_token_id,
)
decoded = tokenizer.batch_decode(out)
assistant_message = (
decoded[0].split("<|assistant|>\n")[-1].replace(eos_token, "")
)
print(assistant_message)
```
## Gradio Demo
```sh
git clone https://github.com/mrm8488/mamba-chat.git
cd mamba-chat
pip install -r requirements.txt
pip install -q gradio==4.8.0
python app.py \
--model clibrain/mamba-2.8b-chat-no_robots \
--share
```
## Evaluations
Coming soon!
## Acknowledgments
Thanks to [mamba-chat](https://github.com/havenhq/mamba-chat/tree/main) for heavily inspiring our work |