Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: false
base_model: Qwen/Qwen2.5-0.5B
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 444b10db3e9b5a95_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/444b10db3e9b5a95_train_data.json
  type:
    field_instruction: link
    field_output: text
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 1.0e-05
eval_max_new_tokens: 128
eval_steps: 150
eval_strategy: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: false
hub_model_id: clarxus/9cc234e5-b228-432d-9d1e-eb4026b6726b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 150
lora_alpha: 16
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 75GB
max_steps: 500
micro_batch_size: 16
mlflow_experiment_name: /tmp/444b10db3e9b5a95_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.15
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 476fc048-ce25-43c4-90b8-98c02548b87c
wandb_project: Gradients-On-Seven
wandb_run: your_name
wandb_runid: 476fc048-ce25-43c4-90b8-98c02548b87c
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null

9cc234e5-b228-432d-9d1e-eb4026b6726b

This model is a fine-tuned version of Qwen/Qwen2.5-0.5B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6482

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
No log 0.0006 1 2.8780
2.7789 0.0837 150 2.7107
2.691 0.1674 300 2.6640
2.6588 0.2510 450 2.6482

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
11
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for clarxus/9cc234e5-b228-432d-9d1e-eb4026b6726b

Base model

Qwen/Qwen2.5-0.5B
Adapter
(327)
this model