Edit model card

citizenlab/twitter-xlm-roberta-base-sentiment-finetunned

This is multilingual XLM-Roberta model sequence classifier fine tunned and based on Cardiff NLP Group sentiment classification model.

How to use it

from transformers import pipeline

model_path = "citizenlab/twitter-xlm-roberta-base-sentiment-finetunned"

sentiment_classifier = pipeline("text-classification", model=model_path, tokenizer=model_path)
sentiment_classifier("this is a lovely message")
> [{'label': 'Positive', 'score': 0.9918450713157654}]

sentiment_classifier("you are an idiot and you and your family should go back to your country")
> [{'label': 'Negative', 'score': 0.9849833846092224}]

Evaluation

              precision    recall  f1-score   support

    Negative       0.57      0.14      0.23        28
     Neutral       0.78      0.94      0.86       132
    Positive       0.89      0.80      0.85        51

    accuracy                           0.80       211
   macro avg       0.75      0.63      0.64       211
weighted avg       0.78      0.80      0.77       211
Downloads last month
75,517
Hosted inference API
Text Classification
Examples
Examples
This model can be loaded on the Inference API on-demand.

Dataset used to train citizenlab/twitter-xlm-roberta-base-sentiment-finetunned

Space using citizenlab/twitter-xlm-roberta-base-sentiment-finetunned 1