File size: 1,627 Bytes
1342199 c762441 cbf952c c762441 cbf952c 3230947 cbf952c f488ccc cbf952c 839da09 cbf952c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: apache-2.0
---
# Glot500 (base-sized model)
Glot500 model (Glot500-m) pre-trained on 500+ languages using a masked language modeling (MLM) objective. It was introduced in
[this paper](https://arxiv.org/pdf/2305.12182.pdf) (ACL 2023) and first released in [this repository](https://github.com/cisnlp/Glot500).
## Usage
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='cis-lmu/glot500-base')
>>> unmasker("Hello I'm a <mask> model.")
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained('cis-lmu/glot500-base')
model = AutoModelForMaskedLM.from_pretrained("cis-lmu/glot500-base")
# prepare input
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
# forward pass
output = model(**encoded_input)
```
### BibTeX entry and citation info
```bibtex
@inproceedings{imani-etal-2023-glot500,
title = "Glot500: Scaling Multilingual Corpora and Language Models to 500 Languages",
author = " Imani, Ayyoob and Lin, Peiqin and Kargaran, Amir Hossein and Severini, Silvia and Sabet, Masoud Jalili and Kassner, Nora and Ma, Chunlan and Schmid, Helmut and Martins, André and Yvon, François and Sch{\"u}tze, Hinrich",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics.",
year = "2023",
url = "https://arxiv.org/abs/2305.12182",
}
```
|