Model Card for Model ID
Model Description
This model is a fine-tuned version of facebook/nllb-200-distilled-600M
on the galsenai/french-wolof-translation
dataset. It is designed to perform translation from French to Wolof.
Evaluation
The model was evaluated on a subset of 50 lines from the test split of the galsenai/french-wolof-translation dataset. The evaluation metric used was BLEU score, computed using the sacrebleu library.
Evaluation Results
BLEU score: 9.17
How to Use
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model_name = "cibfaye/nllb-fr-wo"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def translate(text, src_lang='fra_Latn', tgt_lang='wol_Latn', a=32, b=3, max_input_length=1024, num_beams=5, **kwargs):
tokenizer.src_lang = src_lang
tokenizer.tgt_lang = tgt_lang
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=max_input_length)
result = model.generate(
**inputs.to(model.device),
forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang),
max_new_tokens=int(a + b * inputs.input_ids.shape[1]),
num_beams=num_beams,
**kwargs
)
return tokenizer.batch_decode(result, skip_special_tokens=True)
text = "Votre texte en français ici."
translation = translate(text)
print(translation)
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train cibfaye/nllb-fr-wo
Evaluation results
- sacrebleu on galsenai/french-wolof-translationself-reported9.170