xlm-roberta-large-finetuned-sent_in_news
This model is a fine-tuned version of xlm-roberta-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.8872
- Accuracy: 0.7273
- F1: 0.5125
Model description
Модель ассиметрична, реагирует на метку X в тексте новости. Попробуйте следующие примеры:
a) Агентство X понизило рейтинг банка Fitch.
b) Агентство Fitch понизило рейтинг банка X.
a) Компания Финам показала рекордную прибыль, говорят аналитики компании X. b) Компания X показала рекордную прибыль, говорят аналитики компании Финам.
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.0 | 106 | 1.2526 | 0.6108 | 0.1508 |
No log | 2.0 | 212 | 1.1553 | 0.6648 | 0.1141 |
No log | 3.0 | 318 | 1.1150 | 0.6591 | 0.1247 |
No log | 4.0 | 424 | 1.0007 | 0.6705 | 0.1383 |
1.1323 | 5.0 | 530 | 0.9267 | 0.6733 | 0.2027 |
1.1323 | 6.0 | 636 | 1.0869 | 0.6335 | 0.4084 |
1.1323 | 7.0 | 742 | 1.1224 | 0.6932 | 0.4586 |
1.1323 | 8.0 | 848 | 1.2535 | 0.6307 | 0.3424 |
1.1323 | 9.0 | 954 | 1.4288 | 0.6932 | 0.4881 |
0.5252 | 10.0 | 1060 | 1.5856 | 0.6932 | 0.4739 |
0.5252 | 11.0 | 1166 | 1.7101 | 0.6733 | 0.4530 |
0.5252 | 12.0 | 1272 | 1.7330 | 0.6903 | 0.4750 |
0.5252 | 13.0 | 1378 | 1.8872 | 0.7273 | 0.5125 |
0.5252 | 14.0 | 1484 | 1.8797 | 0.7301 | 0.5033 |
0.1252 | 15.0 | 1590 | 1.9339 | 0.7330 | 0.5024 |
0.1252 | 16.0 | 1696 | 1.9632 | 0.7301 | 0.4967 |
Framework versions
- Transformers 4.11.2
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.