dapBERT
DapBERT is a BERT-like model trained based on the domain adaptive pretraining method (Gururangan et al.) for the patent domain. Bert-base-uncased is used as base for the training. The training dataset used consists of a corpus of 10,000,000 patent abstracts that have been filed between 1998-2020 in US and European patent offices as well as the World Intellectual Property Organization.
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.