christinacdl's picture
Update README.md
f0019e8 verified
|
raw
history blame
1.48 kB
metadata
license: mit
base_model: xlm-roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: XLM_RoBERTa-Multilingual-Clickbait-Detection
    results: []
datasets:
  - christinacdl/clickbait_detection_dataset
language:
  - en
  - el
  - it
  - es
  - pt
  - pl
  - ro
  - de
pipeline_tag: text-classification

XLM_RoBERTa-Multilingual-Clickbait-Detection

This model is a fine-tuned version of xlm-roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2346
  • Micro F1: 0.9735
  • Macro F1: 0.9734
  • Accuracy: 0.9735

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Framework versions

  • Transformers 4.36.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.13.1
  • Tokenizers 0.15.0