File size: 1,481 Bytes
9e7f6ae f0019e8 9e7f6ae f0019e8 9e7f6ae f0019e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: mit
base_model: xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: XLM_RoBERTa-Multilingual-Clickbait-Detection
results: []
datasets:
- christinacdl/clickbait_detection_dataset
language:
- en
- el
- it
- es
- pt
- pl
- ro
- de
pipeline_tag: text-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLM_RoBERTa-Multilingual-Clickbait-Detection
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2346
- Micro F1: 0.9735
- Macro F1: 0.9734
- Accuracy: 0.9735
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
### Framework versions
- Transformers 4.36.1
- Pytorch 2.1.0+cu121
- Datasets 2.13.1
- Tokenizers 0.15.0 |