File size: 1,481 Bytes
9e7f6ae
 
 
 
 
 
 
f0019e8
 
 
9e7f6ae
 
 
f0019e8
 
 
 
 
 
 
 
 
 
 
 
9e7f6ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0019e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: mit
base_model: xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: XLM_RoBERTa-Multilingual-Clickbait-Detection
  results: []
datasets:
- christinacdl/clickbait_detection_dataset
language:
- en
- el
- it
- es
- pt
- pl
- ro
- de
pipeline_tag: text-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# XLM_RoBERTa-Multilingual-Clickbait-Detection

This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2346
- Micro F1: 0.9735
- Macro F1: 0.9734
- Accuracy: 0.9735

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results



### Framework versions

- Transformers 4.36.1
- Pytorch 2.1.0+cu121
- Datasets 2.13.1
- Tokenizers 0.15.0