File size: 2,943 Bytes
66514b4
 
0019f04
2443029
 
 
 
 
66514b4
 
2443029
66514b4
 
 
 
2443029
66514b4
2443029
66514b4
2443029
66514b4
2443029
 
 
 
 
 
 
 
 
 
66514b4
2443029
 
66514b4
2443029
 
 
66514b4
2443029
 
 
 
66514b4
2443029
 
 
 
66514b4
2443029
 
 
 
 
 
 
 
66514b4
 
2443029
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
datasets:
- maywell/ko_Ultrafeedback_binarized
base model:
- yanolja/EEVE-Korean-Instruct-10.8B-v1.0
---

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f22e4076fedc4fd11e978f/MoTedec_ZL8GM2MmGyAPs.png)




# T3Q-LLM-sft1.0-dpo1.0

## This model is a version of T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0 that has been fine-tuned with DPO.

## Model Developers Chihoon Lee(chihoonlee10), T3Q

## Prompt Template
```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: {prompt}
Assistant:
```
## How to Use it
```python
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained("T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0")
tokenizer = AutoTokenizer.from_pretrained("T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0")

prompt_template = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\nHuman: {prompt}\nAssistant:\n"
text = 'ν•œκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μΈκ°€μš”? μ•„λž˜ 선택지 쀑 κ³¨λΌμ£Όμ„Έμš”.\n\n(A) κ²½μ„±\n(B) λΆ€μ‚°\n(C) 평양\n(D) μ„œμšΈ\n(E) μ „μ£Ό'
model_inputs = tokenizer(prompt_template.format(prompt=text), return_tensors='pt')

outputs = model.generate(**model_inputs, max_new_tokens=256)
output_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
print(output_text)
```

### Example Output
```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: ν•œκ΅­μ˜ μˆ˜λ„λŠ” μ–΄λ””μΈκ°€μš”? μ•„λž˜ 선택지 쀑 κ³¨λΌμ£Όμ„Έμš”.

(A) κ²½μ„±
(B) λΆ€μ‚°
(C) 평양
(D) μ„œμšΈ
(E) μ „μ£Ό
Assistant:
(D) μ„œμšΈμ΄ ν•œκ΅­μ˜ μˆ˜λ„μž…λ‹ˆλ‹€. μ„œμšΈμ€ λ‚˜λΌμ˜ 뢁동뢀에 μœ„μΉ˜ν•΄ 있으며, μ •μΉ˜, 경제, λ¬Έν™”μ˜ μ€‘μ‹¬μ§€μž…λ‹ˆλ‹€. μ•½ 1,000만 λͺ…이 λ„˜λŠ” 인ꡬλ₯Ό 가진 μ„Έκ³„μ—μ„œ κ°€μž₯ 큰 λ„μ‹œ 쀑 ν•˜λ‚˜μž…λ‹ˆλ‹€. μ„œμšΈμ€ 높은 λΉŒλ”©, ν˜„λŒ€μ μΈ 인프라, ν™œκΈ° λ¬Έν™” μž₯면으둜 유λͺ…ν•©λ‹ˆλ‹€. λ˜ν•œ, λ§Žμ€ 역사적 λͺ…μ†Œμ™€ 박물관이 μžˆμ–΄ λ°©λ¬Έκ°λ“€μ—κ²Œ ν’λΆ€ν•œ λ¬Έν™” μ²΄ν—˜μ„ μ œκ³΅ν•©λ‹ˆλ‹€.
```


|      Task      |Version| Metric |Value |   |Stderr|
|----------------|------:|--------|-----:|---|-----:|
|kobest_boolq    |      0|acc     |0.9387|Β±  |0.0064|
|                |       |macro_f1|0.9387|Β±  |0.0064|
|kobest_copa     |      0|acc     |0.7590|Β±  |0.0135|
|                |       |macro_f1|0.7585|Β±  |0.0135|
|kobest_hellaswag|      0|acc     |0.5080|Β±  |0.0224|
|                |       |acc_norm|0.5580|Β±  |0.0222|
|                |       |macro_f1|0.5049|Β±  |0.0224|
|kobest_sentineg |      0|acc     |0.8489|Β±  |0.0180|
|                |       |macro_f1|0.8483|Β±  |0.0180|