File size: 2,943 Bytes
66514b4 0019f04 2443029 66514b4 2443029 66514b4 2443029 66514b4 2443029 66514b4 2443029 66514b4 2443029 66514b4 2443029 66514b4 2443029 66514b4 2443029 66514b4 2443029 66514b4 2443029 66514b4 2443029 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
datasets:
- maywell/ko_Ultrafeedback_binarized
base model:
- yanolja/EEVE-Korean-Instruct-10.8B-v1.0
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f22e4076fedc4fd11e978f/MoTedec_ZL8GM2MmGyAPs.png)
# T3Q-LLM-sft1.0-dpo1.0
## This model is a version of T3Q-LLM/T3Q-LLM-solar10.8-sft-v1.0 that has been fine-tuned with DPO.
## Model Developers Chihoon Lee(chihoonlee10), T3Q
## Prompt Template
```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: {prompt}
Assistant:
```
## How to Use it
```python
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0")
tokenizer = AutoTokenizer.from_pretrained("T3Q-LLM/T3Q-LLM-sft1.0-dpo1.0")
prompt_template = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\nHuman: {prompt}\nAssistant:\n"
text = 'νκ΅μ μλλ μ΄λμΈκ°μ? μλ μ νμ§ μ€ κ³¨λΌμ£ΌμΈμ.\n\n(A) κ²½μ±\n(B) λΆμ°\n(C) νμ\n(D) μμΈ\n(E) μ μ£Ό'
model_inputs = tokenizer(prompt_template.format(prompt=text), return_tensors='pt')
outputs = model.generate(**model_inputs, max_new_tokens=256)
output_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
print(output_text)
```
### Example Output
```
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: νκ΅μ μλλ μ΄λμΈκ°μ? μλ μ νμ§ μ€ κ³¨λΌμ£ΌμΈμ.
(A) κ²½μ±
(B) λΆμ°
(C) νμ
(D) μμΈ
(E) μ μ£Ό
Assistant:
(D) μμΈμ΄ νκ΅μ μλμ
λλ€. μμΈμ λλΌμ λΆλλΆμ μμΉν΄ μμΌλ©°, μ μΉ, κ²½μ , λ¬Ένμ μ€μ¬μ§μ
λλ€. μ½ 1,000λ§ λͺ
μ΄ λλ μΈκ΅¬λ₯Ό κ°μ§ μΈκ³μμ κ°μ₯ ν° λμ μ€ νλμ
λλ€. μμΈμ λμ λΉλ©, νλμ μΈ μΈνλΌ, νκΈ° λ¬Έν μ₯λ©΄μΌλ‘ μ λͺ
ν©λλ€. λν, λ§μ μμ¬μ λͺ
μμ λ°λ¬Όκ΄μ΄ μμ΄ λ°©λ¬Έκ°λ€μκ² νλΆν λ¬Έν 체νμ μ 곡ν©λλ€.
```
| Task |Version| Metric |Value | |Stderr|
|----------------|------:|--------|-----:|---|-----:|
|kobest_boolq | 0|acc |0.9387|Β± |0.0064|
| | |macro_f1|0.9387|Β± |0.0064|
|kobest_copa | 0|acc |0.7590|Β± |0.0135|
| | |macro_f1|0.7585|Β± |0.0135|
|kobest_hellaswag| 0|acc |0.5080|Β± |0.0224|
| | |acc_norm|0.5580|Β± |0.0222|
| | |macro_f1|0.5049|Β± |0.0224|
|kobest_sentineg | 0|acc |0.8489|Β± |0.0180|
| | |macro_f1|0.8483|Β± |0.0180| |