SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("cherifkhalifah/finetuned-snli-MiniLM-L12-v2-100k-en-fr")
# Run inference
sentences = [
"it looks fertile and it it um i mean it rains enough they have the climate and the rain and if not it 's like i 've been to Saint Thomas and it just starts from the ocean up",
'They have the rain and the climate so I imagine the lands would be fertile .',
"They don 't know how to do it .",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
snli-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.3725 |
spearman_cosine | 0.3729 |
pearson_manhattan | 0.365 |
spearman_manhattan | 0.3725 |
pearson_euclidean | 0.3657 |
spearman_euclidean | 0.3729 |
pearson_dot | 0.3725 |
spearman_dot | 0.3729 |
pearson_max | 0.3725 |
spearman_max | 0.3729 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 100,000 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 5 tokens
- mean: 35.27 tokens
- max: 128 tokens
- min: 5 tokens
- mean: 18.46 tokens
- max: 66 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence_0 sentence_1 label Natalia M' a regardé .
Natalia a regardé et attend que je lui donne l' épée .
0.5
And he sounded sincere .
He sounded sincere.He was sounding sincere in his words .
0.0
There 's a small zoo area where you can see snakes , lizards , birds of prey , wolves , hyenas , foxes , and various desert cats , including cheetahs and leopards .
The zoo is home to some endangered desert animals .
0.5
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | snli-dev_spearman_max |
---|---|---|---|
0.08 | 500 | 0.2008 | 0.0433 |
0.16 | 1000 | 0.1757 | 0.1024 |
0.24 | 1500 | 0.1732 | 0.1503 |
0.32 | 2000 | 0.1685 | 0.2168 |
0.4 | 2500 | 0.1702 | 0.2206 |
0.48 | 3000 | 0.1676 | 0.2117 |
0.56 | 3500 | 0.1637 | 0.2624 |
0.64 | 4000 | 0.1636 | 0.2169 |
0.72 | 4500 | 0.1608 | 0.0051 |
0.8 | 5000 | 0.1601 | 0.2236 |
0.88 | 5500 | 0.1597 | 0.2471 |
0.96 | 6000 | 0.1596 | 0.2934 |
1.0 | 6250 | - | 0.2905 |
1.04 | 6500 | 0.1602 | 0.3001 |
1.12 | 7000 | 0.1571 | 0.3116 |
1.2 | 7500 | 0.1588 | 0.3145 |
1.28 | 8000 | 0.1562 | 0.3304 |
1.3600 | 8500 | 0.1548 | 0.3376 |
1.44 | 9000 | 0.156 | 0.3359 |
1.52 | 9500 | 0.1552 | 0.3194 |
1.6 | 10000 | 0.153 | 0.3474 |
1.6800 | 10500 | 0.1529 | 0.3220 |
1.76 | 11000 | 0.1518 | 0.3255 |
1.8400 | 11500 | 0.1499 | 0.3332 |
1.92 | 12000 | 0.1524 | 0.3521 |
2.0 | 12500 | 0.1512 | 0.3425 |
2.08 | 13000 | 0.1514 | 0.3462 |
2.16 | 13500 | 0.1516 | 0.3414 |
2.24 | 14000 | 0.1532 | 0.3453 |
2.32 | 14500 | 0.1459 | 0.3699 |
2.4 | 15000 | 0.1524 | 0.3576 |
2.48 | 15500 | 0.1506 | 0.3418 |
2.56 | 16000 | 0.1488 | 0.3559 |
2.64 | 16500 | 0.1486 | 0.3597 |
2.7200 | 17000 | 0.1469 | 0.3552 |
2.8 | 17500 | 0.1448 | 0.3459 |
2.88 | 18000 | 0.1458 | 0.3503 |
2.96 | 18500 | 0.1468 | 0.3647 |
3.0 | 18750 | - | 0.3611 |
3.04 | 19000 | 0.1472 | 0.3741 |
3.12 | 19500 | 0.1457 | 0.3603 |
3.2 | 20000 | 0.147 | 0.3576 |
3.2800 | 20500 | 0.1451 | 0.3663 |
3.36 | 21000 | 0.1438 | 0.3734 |
3.44 | 21500 | 0.1471 | 0.3698 |
3.52 | 22000 | 0.1462 | 0.3646 |
3.6 | 22500 | 0.1436 | 0.3740 |
3.68 | 23000 | 0.1441 | 0.3696 |
3.76 | 23500 | 0.1423 | 0.3636 |
3.84 | 24000 | 0.1411 | 0.3713 |
3.92 | 24500 | 0.1438 | 0.3706 |
4.0 | 25000 | 0.1421 | 0.3729 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for cherifkhalifah/finetuned-snli-MiniLM-L12-v2-100k-en-fr
Base model
sentence-transformers/all-MiniLM-L12-v2Evaluation results
- Pearson Cosine on snli devself-reported0.373
- Spearman Cosine on snli devself-reported0.373
- Pearson Manhattan on snli devself-reported0.365
- Spearman Manhattan on snli devself-reported0.373
- Pearson Euclidean on snli devself-reported0.366
- Spearman Euclidean on snli devself-reported0.373
- Pearson Dot on snli devself-reported0.373
- Spearman Dot on snli devself-reported0.373
- Pearson Max on snli devself-reported0.373
- Spearman Max on snli devself-reported0.373