An instruction-tuned LoRA model of https://huggingface.co/baichuan-inc/baichuan-7B

This checkpoint is trained with: https://github.com/hiyouga/LLaMA-Efficient-Tuning

Usage:

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from peft import PeftModel


tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/baichuan-7B", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("baichuan-inc/baichuan-7B", device_map="auto", trust_remote_code=True)
model = PeftModel.from_pretrained(model, "chenliang1225/baichuan-7b-sft")
streamer = TextStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)

query = "陨石为什么总能落在陨石坑里?"

inputs = tokenizer(["### Instruction:\n{}\n\n### Response:\n".format(query)], return_tensors="pt")
inputs = inputs.to("cuda")
generate_ids = model.generate(**inputs, max_new_tokens=256, streamer=streamer, top_p=0.7, temperature=0.95)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Dataset used to train chenliang1225/baichuan-7b-sft