ap-vIPVV9dqluiiO2kf7JwA61
This model is a fine-tuned version of openai/whisper-large-v3 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3485
- Model Preparation Time: 0.0151
- Wer: 0.1102
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer |
---|---|---|---|---|---|
0.742 | 0.9791 | 41 | 0.7811 | 0.0151 | 0.1875 |
0.5242 | 1.9791 | 82 | 0.5559 | 0.0151 | 0.1543 |
0.328 | 2.9791 | 123 | 0.3325 | 0.0151 | 0.1214 |
0.2466 | 3.9791 | 164 | 0.2946 | 0.0151 | 0.1120 |
0.2118 | 4.9791 | 205 | 0.2802 | 0.0151 | 0.1094 |
0.1682 | 5.9791 | 246 | 0.2751 | 0.0151 | 0.1052 |
0.1316 | 6.9791 | 287 | 0.2780 | 0.0151 | 0.1070 |
0.0857 | 7.9791 | 328 | 0.3017 | 0.0151 | 0.1058 |
0.0725 | 8.9791 | 369 | 0.3152 | 0.0151 | 0.1060 |
0.0448 | 9.9791 | 410 | 0.3485 | 0.0151 | 0.1102 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for charlesfrye/ap-vIPVV9dqluiiO2kf7JwA61
Base model
openai/whisper-large-v3