File size: 6,018 Bytes
f556705 bd39c8d 7c58a16 79cb7a6 19ef243 79cb7a6 3202359 d8cd87c 3202359 79cb7a6 b05e402 79cb7a6 ee0dcc3 79cb7a6 b05e402 ee0dcc3 57dc738 b05e402 b9a4cc6 b05e402 38106d1 b05e402 8fffa2b b05e402 8fffa2b b05e402 8fffa2b b05e402 38106d1 6eaddc4 2b0a714 da2c371 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
---
license: apache-2.0
base_model: teknium/OpenHermes-2.5-Mistral-7B
datasets:
- bunkalab/topic_based_chatml_dpo_pairs
library_name: Bunkatopics
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63c13d74f02ef5b95e0e448e/LCntraaGmEF6W7I9DEA-1.png)
## Model description
TopicNeuralHermes 2.5 Mistral 7B is a refined model developed through fine-tuning with a specific subset of data, selected via Topic Modeling Techniques using [Bunkatopics](https://github.com/charlesdedampierre/BunkaTopics), as a continuing from [OpenHermes 2.5](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B).
The model was trained on a refined DPO dataset. The objective was to train the model on a small portion of the DPO data. To achieve this, we compared two datasets used to train the reward model: the rejected Llama answers and the accepted ChatGPT answers from the [DPO dataset](mlabonne/chatml_dpo_pairs).
We then conducted topic modeling on both datasets, keeping only the topics that existed in the accepted dataset but not in the rejected one.
Our hypothesis is that these topics encapsulate the main differences between the two answering styles.
This method allows for quicker convergence with significantly less data (around 1/6 of the initial dataset). The Dataset can be found at [bunkalab/topic_based_chatml_dpo_pairs](https://huggingface.co/datasets/bunkalab/topic_based_chatml_dpo_pairs)
Special thanks to [mlabonne](https://huggingface.co/mlabonne) for creating the [colab notebook](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing#scrollTo=YpdkZsMNylvp) that facilitated the DPO Strategy.
Results of the model can be found here: We do as well as similar models with way less data and computing power :)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63c13d74f02ef5b95e0e448e/TOEijYNgtY6B7U9Pn29gL.png)
## Topic Analysis
We applied the topic modeling method to both datasets, extracting 30 topics from each.
These topics were characterized using the 10 most specific unigrams or bigrams.
We then compared the two sets of topics (30 from each dataset) and retained those in the accepted dataset that shared fewer than 2 terms with any topic in the rejected dataset
We found the 13 distinctive following topics described by 10 terms each:
**Emotional Dynamics**: feelings, Quinn, Austin, minority women, teaching, schools, individual, personality, backgrounds, triggers.
**Global Knowledge Queries**: question, information, geography, news articles, Step, answer, capital city, pipeline system, country, analogy.
**Digital Interactions and Queries**: questions, question, PersonX, modem, answers, effect relationship, Quora, browser, answer, e-commerce.
**Business and Cybersecurity**: email, businesses, initiatives, innovation, advertising papers, spam, breaches, antivirus, payments, prospects.
**Lifestyle and Wellness**: sleep, exercise, gifts, shopping, Casey, stores, stress, headaches, options, mood.
**Wildlife Ecology**: birds, prey, animals, species, infection, nest, eggs, bacteria, insects, kitty condo.
**Environmental Science and Climate**: temperature, gases, greenhouse, emissions, perturbation, sulfur, dioxide, climate change, water, heat.
**Maritime and Mechanical Engineering**: ship, bowling, propulsion, beam width, Filing cabinet, LED, lane, containment area, lawnmower, rotors.
**Cultural and Social Dynamics**: Lindsey, museum, Kate, Rachel, Jason, Alex, Erin, conversation, Laura, exhibits.
**Political Media Analysis**: media platforms, election, politics, teenagers, elections, White House, Barack Obama, nation, Confederate, depression.
**International Relations and Policy**: cooperation, EU, nations, alliance, NATO, European Union, member states, policy, monarch, Brexit.
**Astrophysics and Physical Sciences**: electrons, km, Moon, acceleration, orbit, friction, current, asteroid, electron, collector emitter.
**Film Critique and Analysis**: movie review, film, reviewer, sentiment, critic, flaws, DVD, plot, opinion, originality.
While those topics are not domain-specific, they did not appear right away in the rejected dataset. Further research need to undersand the reason behind the prominence of
those topics in the accepted dataset.
## Usage
You can run this model using LM Studio or any other frontend.
You can also run this model using the following code:
```python
import transformers
from transformers import AutoTokenizer
# Format prompt
message = [
{"role": "system", "content": "You are a helpful assistant chatbot."},
{"role": "user", "content": "What is Topic Modeling?"}
]
tokenizer = AutoTokenizer.from_pretrained('charlesdedampierre/TopicNeuralHermes-2.5-Mistral-7B')
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
# Create pipeline
pipeline = transformers.pipeline(
"text-generation",
model='charlesdedampierre/TopicNeuralHermes-2.5-Mistral-7B',
tokenizer=tokenizer
)
# Generate text
sequences = pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_p=0.9,
num_return_sequences=1,
max_length=200,
)
print(sequences[0]['generated_text'])
```
## Training hyperparameters
**LoRA**:
* r=16
* lora_alpha=16
* lora_dropout=0.05
* bias="none"
* task_type="CAUSAL_LM"
* target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
**Training arguments**:
* per_device_train_batch_size=4
* gradient_accumulation_steps=4
* gradient_checkpointing=True
* learning_rate=5e-5
* lr_scheduler_type="cosine"
* max_steps=200
* optim="paged_adamw_32bit"
* warmup_steps=100
**DPOTrainer**:
* beta=0.1
* max_prompt_length=1024
* max_length=1536
You can find the results of the running on Weights & Biases: https://wandb.ai/bunka/huggingface/runs/xq59p47g?workspace=user-charlesdedampierre
## Model Family Tree
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63c13d74f02ef5b95e0e448e/MDtFeO_SoigL748c6xTmc.png)
|