YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
β° Clock-VAE-Color-140x
νΉμ μκ°μ μλ λ‘κ·Έ μκ³ μ΄λ―Έμ§λ₯Ό μμ±νκΈ° μν΄ μ€κ³λ Conditional VAE λͺ¨λΈμ
λλ€.
A Conditional VAE tailored for generating analog clock images that represent specific times.
π Naming Convention
clock-vae
: λͺ¨λΈ μ΄λ¦ (Model name)color
: μ΄λ―Έμ§ μ ν (Image type:color
ormono
)140x
: μ΄λ―Έμ§ ν¬κΈ° (Image size:140x140
)v1
: λͺ¨λΈ λ²μ (Model version)
π§ Model Definition Code
class ConditionalVAE(nn.Module):
def __init__(self, input_dim, condition_dim, latent_dim):
super(ClockVAEHandler.ConditionalVAE, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(input_dim + condition_dim, 512),
nn.ReLU(),
nn.Linear(512, 256),
nn.ReLU(),
nn.Linear(256, 128),
nn.ReLU(),
)
self.fc_mu = nn.Linear(128, latent_dim)
self.fc_logvar = nn.Linear(128, latent_dim)
self.decoder = nn.Sequential(
nn.Linear(latent_dim + condition_dim, 128),
nn.ReLU(),
nn.Linear(128, 256),
nn.ReLU(),
nn.Linear(256, 512),
nn.ReLU(),
nn.Linear(512, input_dim),
nn.Sigmoid()
)
def encode(self, x, condition):
x = x.view(x.size(0), -1)
condition = condition.view(condition.size(0), -1)
x_cond = torch.cat([x, condition], dim=1)
h = self.encoder(x_cond)
mu = self.fc_mu(h)
logvar = self.fc_logvar(h)
return mu, logvar
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def decode(self, z, condition):
z_cond = torch.cat([z, condition], dim=1)
return self.decoder(z_cond)
def forward(self, x, condition):
mu, logvar = self.encode(x, condition)
z = self.reparameterize(mu, logvar)
return self.decode(z, condition), mu, logvar
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.