File size: 16,941 Bytes
6adb5cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"DEMO_MODE = True"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# Importing necessary libraries:\n",
"# - os, json, time for file, data and time operations respectively.\n",
"# - requests for making HTTP requests.\n",
"# - BeautifulSoup for parsing HTML content.\n",
"# - Other imports for logging, data manipulation, progress indication, and more.\n",
"import os\n",
"import json\n",
"import time\n",
"import munch\n",
"import requests\n",
"import argparse\n",
"import pandas as pd\n",
"from tqdm import tqdm\n",
"from datetime import date\n",
"from loguru import logger\n",
"from random import randint\n",
"from bs4 import BeautifulSoup, NavigableString\n",
"\n",
"from preprocessing.preprocessing_sub_functions import remove_emojis\n",
"from topic_crawling import loop_through_posts\n",
"\n",
"\n",
"# This function reads a JSON file named \"website_format.json\".\n",
"# The file contain a list of user agents.\n",
"# User agents are strings that browsers send to websites to identify themselves.\n",
"# This list is likely used to rotate between different user agents when making requests,\n",
"# making the scraper seem like different browsers and reducing the chances of being blocked.\n",
"def get_web_component():\n",
" with open(\"website_format.json\") as json_file:\n",
" website_format = json.load(json_file)\n",
" website_format = munch.munchify(website_format)\n",
" return website_format.USER_AGENTS\n",
"\n",
"\n",
"# This function fetches a webpage's content.\n",
"# It randomly selects a user agent from the provided list to make the request.\n",
"# After fetching, it uses BeautifulSoup to parse the page's HTML content.\n",
"# def get_web_content(url, USER_AGENTS):\n",
"# random_agent = USER_AGENTS[randint(0, len(USER_AGENTS) - 1)]\n",
"# headers = {\"User-Agent\": random_agent}\n",
"# req = requests.get(url, headers=headers)\n",
"# req.encoding = req.apparent_encoding\n",
"# soup = BeautifulSoup(req.text, features=\"lxml\")\n",
"# return soup\n",
"from topic_crawling import get_web_content\n",
"\n",
"\n",
"# This function extracts pagination links from a page.\n",
"# These links point to other pages of content, often seen at the bottom of forums or search results.\n",
"# The function returns both the individual page links and the \"next\" link,\n",
"# which points to the next set of results.\n",
"def get_pages_urls(url, USER_AGENTS):\n",
" time.sleep(1)\n",
" soup = get_web_content(url, USER_AGENTS)\n",
" # Finding the pagination links based on their HTML structure and CSS classes.\n",
" first_td = soup.find(\"td\", class_=\"middletext\", id=\"toppages\")\n",
" nav_pages_links = first_td.find_all(\"a\", class_=\"navPages\")\n",
" href_links = [link[\"href\"] for link in nav_pages_links]\n",
" next_50_link = href_links[-3] # Assuming the third-last link is the \"next\" link.\n",
" href_links.insert(0, url)\n",
" return href_links, next_50_link\n",
"\n",
"\n",
"# This function extracts individual post URLs from a page.\n",
"# It's likely targeting a forum or blog structure, where multiple posts or threads are listed on one page.\n",
"def get_post_urls(url, USER_AGENTS):\n",
" time.sleep(1)\n",
" soup = get_web_content(url, USER_AGENTS)\n",
" # Finding post links based on their HTML structure and CSS classes.\n",
" links_elements = soup.select(\"td.windowbg span a\")\n",
" links = [link[\"href\"] for link in links_elements]\n",
"\n",
" # # If including rules and announcements posts\n",
" # links_elements = soup.select('td.windowbg3 span a')\n",
" # links_ = [link['href'] for link in links_elements]\n",
" # links.extend(links_)\n",
"\n",
" return links\n",
"\n",
"\n",
"# This function loops through the main page and its paginated versions to collect URLs.\n",
"# It repeatedly calls 'get_pages_urls' to fetch batches of URLs until the desired number (num_of_pages) is reached.\n",
"def loop_through_source_url(USER_AGENTS, url, num_of_pages):\n",
" pages_urls = []\n",
" counter = 0\n",
" while len(pages_urls) < num_of_pages:\n",
" print(\"loop_through_source_url: \", len(pages_urls))\n",
" href_links, next_50_link = get_pages_urls(url, USER_AGENTS)\n",
" pages_urls.extend(href_links)\n",
" pages_urls = list(dict.fromkeys(pages_urls)) # Remove any duplicate URLs.\n",
" url = next_50_link\n",
" return pages_urls\n",
"\n",
"\n",
"# This function loops through the provided list of page URLs and extracts post URLs from each of these pages.\n",
"# It ensures that there are no duplicate post URLs by converting the list into a dictionary and back to a list.\n",
"# It returns a list of unique post URLs.\n",
"def loop_through_pages(USER_AGENTS, pages_urls):\n",
" post_urls = []\n",
" for url in tqdm(pages_urls):\n",
" herf_links = get_post_urls(url, USER_AGENTS)\n",
" post_urls.extend(herf_links)\n",
" post_urls = list(dict.fromkeys(post_urls))\n",
" if DEMO_MODE:\n",
" break\n",
" return post_urls\n",
"\n",
"# This function processes a post page. It extracts various details like timestamps, author information, post content, topic, attachments, links, and original HTML information.\n",
"# The function returns a dictionary containing all this extracted data.\n",
"def read_subject_page(USER_AGENTS, post_url, df, remove_emoji):\n",
" time.sleep(1)\n",
" soup = get_web_content(post_url, USER_AGENTS)\n",
" form_tag = soup.find(\"form\", id=\"quickModForm\")\n",
" table_tag = form_tag.find(\"table\", class_=\"bordercolor\")\n",
" td_tag = table_tag.find_all(\"td\", class_=\"windowbg\")\n",
" td_tag.extend(table_tag.find_all(\"td\", class_=\"windowbg2\"))\n",
"\n",
" for comment in tqdm(td_tag):\n",
" res = extract_useful_content_windowbg(comment, remove_emoji)\n",
" if res is not None:\n",
" df = pd.concat([df, pd.DataFrame([res])])\n",
"\n",
" return df\n",
"\n",
"# This function extracts meaningful content from a given HTML element (`tr_tag`). This tag is likely a row in a table, given its name.\n",
"# The function checks the presence of specific tags and classes within this row to extract information such as timestamps, author, post content, topic, attachments, and links.\n",
"# The extracted data is returned as a dictionary.\n",
"def extract_useful_content_windowbg(tr_tag, remove_emoji=True):\n",
" \"\"\"\n",
" Timestamp of the post (ex: September 11, 2023, 07:49:45 AM; but if you want just 11/09/2023 is enough)\n",
" Author of the post (ex: SupermanBitcoin)\n",
" The post itself\n",
"\n",
" The topic where the post was posted (ex: [INFO - DISCUSSION] Security Budget Problem) eg. Whats your thoughts: Next-Gen Bitcoin Mining Machine With 1X Efficiency Rating.\n",
" Number of characters in the post --> so this is an integer\n",
" Does the post contain at least one attachment (image, video etc.) --> if yes put '1' in the column, if no, just put '0'\n",
" Does the post contain at least one link --> if yes put '1' in the column, if no, just put '0'\n",
" \"\"\"\n",
" headerandpost = tr_tag.find(\"td\", class_=\"td_headerandpost\")\n",
" if not headerandpost:\n",
" return None\n",
"\n",
" timestamp = headerandpost.find(\"div\", class_=\"smalltext\").get_text()\n",
" timestamps = timestamp.split(\"Last edit: \")\n",
" timestamp = timestamps[0].strip()\n",
" last_edit = None\n",
" if len(timestamps) > 1:\n",
" if 'Today ' in timestamps[1]:\n",
" last_edit = date.today().strftime(\"%B %d, %Y\")+', '+timestamps[1].split('by')[0].split(\"Today at\")[1].strip()\n",
" last_edit = timestamps[1].split('by')[0].strip()\n",
"\n",
" poster_info_tag = tr_tag.find('td', class_='poster_info')\n",
" anchor_tag = poster_info_tag.find('a')\n",
" author = \"Anonymous\" if anchor_tag is None else anchor_tag.get_text()\n",
"\n",
" link = 0\n",
"\n",
" post_ = tr_tag.find('div', class_='post')\n",
" texts = []\n",
" for child in post_.children:\n",
" if isinstance(child, NavigableString):\n",
" texts.append(child.strip())\n",
" elif child.has_attr('class') and 'ul' in child['class']:\n",
" link = 1\n",
" texts.append(child.get_text(strip=True))\n",
" post = ' '.join(texts)\n",
"\n",
" topic = headerandpost.find('div', class_='subject').get_text()\n",
"\n",
" image = headerandpost.find('div', class_='post').find_all('img')\n",
" if remove_emoji:\n",
" image = remove_emojis(image)\n",
" image_ = min(len(image), 1)\n",
" \n",
" video = headerandpost.find('div', class_='post').find('video')\n",
" video_ = 0 if video is None else 1\n",
" attachment = max(image_, video_)\n",
"\n",
" original_info = headerandpost\n",
"\n",
" return {\n",
" \"timestamp\": timestamp,\n",
" \"last_edit\": last_edit,\n",
" \"author\": author.strip(),\n",
" \"post\": post.strip(),\n",
" \"topic\": topic.strip(),\n",
" \"attachment\": attachment,\n",
" \"link\": link,\n",
" \"original_info\": original_info,\n",
" }\n",
"\n",
"\n",
"# A utility function to save a list (e.g., URLs) to a text file.\n",
"# Each item in the list gets its own line in the file.\n",
"def save_page_file(data, file_name):\n",
" with open(file_name, \"w\") as filehandle:\n",
" for listitem in data:\n",
" filehandle.write(\"%s\\n\" % listitem)\n",
"\n",
"def get_post_max_page(url, USER_AGENTS):\n",
" soup = get_web_content(url, USER_AGENTS)\n",
" # Finding the pagination links based on their HTML structure and CSS classes.\n",
" first_td = soup.find('td', class_='middletext')\n",
" nav_pages_links = first_td.find_all('a', class_='navPages')\n",
"\n",
" href_links = [int(link.text) if link.text.isdigit() else 0 for link in nav_pages_links]\n",
" if len(href_links) == 0:\n",
" # print('No pagination links found: ', url)\n",
" return 1\n",
" m = max(href_links)\n",
" # we can't use more than 10 pages\n",
" m = m if m < 10 else 10\n",
" return m\n",
"\n",
"\n",
"# def parse_args():\n",
"# parser = argparse.ArgumentParser()\n",
"# parser.add_argument(\"url\", help=\"url for the extraction\")\n",
"# parser.add_argument(\"--update\", help=\"extract updated data\", action=\"store_true\")\n",
"# parser.add_argument(\"--board\", help=\"board name\")\n",
"# parser.add_argument(\"--num_of_pages\", '-pages', help=\"number of pages to extract\", type=int)\n",
"# parser.add_argument(\"--num_of_posts_start\", '-posts', help=\"the number of posts start to extract\", type=int, default=0)\n",
"\n",
"# parser.add_argument(\"remove_emoji\", help=\"remove emoji from the post\", action=\"store_true\")\n",
"# return vars(parser.parse_args())\n",
"\n",
"# \n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"mining_section = True\n",
"if mining_section:\n",
" url = \"https://bitcointalk.org/index.php?board=14.0\"\n",
"else:\n",
" url = \"https://bitcointalk.org/index.php?board=1.0\"\n",
"update = False\n",
"\n",
"if DEMO_MODE:\n",
" board = \"Demo\"\n",
" num_of_pages = 1\n",
" num_of_posts_start = 0\n",
"else:\n",
" board = \"Bitcoin\"\n",
" num_of_pages = 1528\n",
" num_of_posts_start = 248\n",
"\n",
"\n",
"\n",
"remove_emoji = True\n",
"\n",
"USER_AGENTS = get_web_component()\n",
"# Ensuring the data directory exists.\n",
"os.makedirs(f\"data/{board}/\", exist_ok=True)\n",
"pages_file_path = f\"data/{board}/pages_urls.txt\"\n",
"post_file_path = f\"data/{board}/post_urls.txt\"\n",
"# If the user chose to update the data, existing files are deleted to make way for new data.\n",
"if update:\n",
" if os.path.exists(pages_file_path):\n",
" os.remove(pages_file_path)\n",
" if os.path.exists(post_file_path):\n",
" os.remove(post_file_path)\n",
" \n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"loop_through_source_url: 0\n"
]
}
],
"source": [
"# If the pages file doesn't exist, the script collects page URLs.\n",
"if not os.path.exists(pages_file_path):\n",
" pages_urls = loop_through_source_url(USER_AGENTS, url, num_of_pages)\n",
" save_page_file(pages_urls, pages_file_path)\n",
"# Reading the existing page URLs from the file.\n",
"with open(pages_file_path, \"r\") as filehandle:\n",
" pages_urls = [\n",
" current_place.rstrip() for current_place in filehandle.readlines()\n",
" ]\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/52 [00:01<?, ?it/s]\n"
]
}
],
"source": [
"\n",
"# If the posts file doesn't exist, the script collects post URLs.\n",
"if not os.path.exists(post_file_path):\n",
" post_urls = loop_through_pages(USER_AGENTS, pages_urls)\n",
" save_page_file(post_urls, post_file_path)\n",
"# Reading the existing post URLs from the file.\n",
"with open(post_file_path, \"r\") as filehandle:\n",
" post_urls = [current_place.rstrip() for current_place in filehandle.readlines()]\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# # for post_url in [\"https://bitcointalk.org/index.php?topic=1306983.0\"]:\n",
"# for post_url in [\"https://bitcointalk.org/index.php?topic=5489570.0\"]:\n",
"# time.sleep(0.8)\n",
"# num_of_post_pages = get_post_max_page(post_url, USER_AGENTS)\n",
"# loop_through_posts(USER_AGENTS, post_url, board, num_of_post_pages, remove_emoji)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββ| 39/39 [01:02<00:00, 1.60s/it]\n"
]
}
],
"source": [
"post_urls_to_process = []\n",
"for post_url in post_urls:\n",
" topic_id = post_url.split('topic=')[1]\n",
" if os.path.exists(f'data/{board}/data_{topic_id}.csv'):\n",
" # print(f'data/{board}/data_{topic_id}.csv already exists')\n",
" continue\n",
" post_urls_to_process.append(post_url)\n",
"\n",
"\n",
"# for (i,post_url) in enumerate(post_urls_to_process):\n",
"for post_url in tqdm(post_urls_to_process):\n",
" num_of_post_pages = get_post_max_page(post_url, USER_AGENTS)\n",
" loop_through_posts(USER_AGENTS, post_url, board, num_of_post_pages, remove_emoji)\n",
" # print(f'{i+1}/{len(post_urls_to_process)} urls done')"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# import time\n",
"# import winsound\n",
"# from tqdm import tqdm\n",
"# winsound.MessageBeep(winsound.MB_ICONEXCLAMATION)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "py310",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|