|
--- |
|
library_name: peft |
|
license: mit |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# AlpaGo: GPT-NeoX-20B Model Trained with Qlora Technique |
|
|
|
AlpaGo is an adapter model trained using the Qlora technique on top of the GPT-NeoX-20B model. This repository contains the code and resources for AlpaGo, which can be used for natural language processing tasks. AlpaGo is built on the [GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture and developed by Math And AI Institute. |
|
|
|
## Features |
|
|
|
- AlpaGo adapter model trained with the Qlora technique |
|
- Based on the GPT-NeoX-20B model, providing high-quality natural language processing capabilities on Engilish Language |
|
|
|
## Installation |
|
|
|
1. Clone the AlpaGo repository: |
|
```python |
|
!git clone https://huggingface.co/myzens/AlpaGo |
|
``` |
|
2. Install the latest version of Python 3 if you haven't already. |
|
|
|
3. Install the required dependencies: |
|
```python |
|
!pip install -r requirements.txt |
|
``` |
|
## Usage |
|
|
|
You can utilize AlpaGo to perform natural language processing tasks. Here's an example of how to use it: |
|
|
|
```python |
|
from peft import PeftModel |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GenerationConfig |
|
model_id = "EleutherAI/gpt-neox-20b" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16 |
|
) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map="auto") |
|
model = PeftModel.from_pretrained(model, "myzens/AlpaGo") |
|
|
|
#You can change Here. |
|
PROMPT = """Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
### Instruction: |
|
Write a short story about a lost key that unlocks a mysterious door. |
|
### Response:""" |
|
|
|
inputs = tokenizer(PROMPT, return_tensors="pt") |
|
input_ids = inputs["input_ids"].cuda() |
|
|
|
generation_config = GenerationConfig( |
|
temperature=0.6, |
|
top_p=0.95, |
|
repetition_penalty=1.15, |
|
|
|
) |
|
|
|
print("Generating...") |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=256, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id, |
|
) |
|
|
|
for s in generation_output.sequences: |
|
print(tokenizer.decode(s)) |
|
|
|
``` |