w2v-bert-2.0-odia_v1

This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0767
  • Wer: 0.1256

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.5356e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4216 0.3733 300 0.2149 0.3309
0.2996 0.7465 600 0.1719 0.2572
0.2271 1.1198 900 0.1366 0.2390
0.1917 1.4930 1200 0.1137 0.2054
0.167 1.8663 1500 0.1208 0.2046
0.1371 2.2395 1800 0.0995 0.1995
0.133 2.6128 2100 0.1006 0.1944
0.1214 2.9860 2400 0.0958 0.1715
0.101 3.3593 2700 0.0853 0.1602
0.1007 3.7325 3000 0.0851 0.1667
0.0898 4.1058 3300 0.0820 0.1532
0.089 4.4790 3600 0.0814 0.1539
0.0776 4.8523 3900 0.0792 0.1479
0.0655 5.2255 4200 0.0782 0.1438
0.0708 5.5988 4500 0.0770 0.1391
0.0662 5.9720 4800 0.0727 0.1372
0.0556 6.3453 5100 0.0757 0.1372
0.0629 6.7185 5400 0.0729 0.1319
0.0472 7.0918 5700 0.0771 0.1369
0.0546 7.4650 6000 0.0760 0.1378
0.041 7.8383 6300 0.0750 0.1402
0.0405 8.2115 6600 0.0776 0.1340
0.0395 8.5848 6900 0.0741 0.1306
0.0366 8.9580 7200 0.0742 0.1255
0.0288 9.3313 7500 0.0767 0.1296
0.0329 9.7045 7800 0.0767 0.1256

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
606M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cdactvm/w2v-bert-2.0-odia_v1

Finetuned
(241)
this model

Space using cdactvm/w2v-bert-2.0-odia_v1 1