Conversational Language Model Interface using FASTTEXT
This project provides a Command Line Interface (CLI) for interacting with a FastText language model, enabling users to generate text sequences based on their input. The script allows customization of parameters such as temperature, input text, top-k predictions, and model file path.
Installation
Before running the script, ensure you have Python installed on your system. Additionally, you'll need to install the FastText library:
Colab
pip install fasttext
Usage
To use the script, you should first obtain or train a FastText model. Place the model file (usually with a .bin
extension) in a known directory.
The script can be executed with various command-line arguments to specify the behavior:
import argparse
import fasttext
import numpy as np
def apply_repetition_penalty(labels, probabilities, used_labels, penalty_scale=1.9):
"""
Applies a repetition penalty to reduce the probability of already used labels.
:param labels: List of possible labels.
:param probabilities: Corresponding list of probabilities.
:param used_labels: Set of labels that have already been used.
:param penalty_scale: Scale of the penalty to be applied.
:return: Adjusted probabilities.
"""
adjusted_probabilities = probabilities.copy()
for i, label in enumerate(labels):
if label in used_labels:
adjusted_probabilities[i] /= penalty_scale
# Normalize the probabilities to sum to 1 again
adjusted_probabilities /= adjusted_probabilities.sum()
return adjusted_probabilities
def predict_sequence(model, text, sequence_length=20, temperature=.5, penalty_scale=1.9):
"""
Generates a sequence of labels using the FastText model with repetition penalty.
:param model: Loaded FastText model.
:param text: Initial text to start the prediction from.
:param sequence_length: Desired length of the sequence.
:param temperature: Temperature for sampling.
:param penalty_scale: Scale of repetition penalty.
:return: List of predicted labels.
"""
used_labels = set()
sequence = []
for _ in range(sequence_length):
# Predict the top k most probable labels
labels, probabilities = model.predict(text, k=40)
labels = [label.replace('__label__', '') for label in labels]
probabilities = np.array(probabilities)
# Adjust the probabilities with repetition penalty
probabilities = apply_repetition_penalty(labels, probabilities, used_labels, penalty_scale)
# Sampling according to the adjusted probabilities
label_index = np.random.choice(range(len(labels)), p=probabilities)
chosen_label = labels[label_index]
# Add the chosen label to the sequence and to the set of used labels
sequence.append(chosen_label)
used_labels.add(chosen_label)
# Update the text with the chosen label for the next prediction
text += ' ' + chosen_label
return sequence
def generate_response(model, input_text, sequence_length=512, temperature=.5, penalty_scale=1.9):
generated_sequence = predict_sequence(model, input_text, sequence_length, temperature, penalty_scale)
return ' '.join(generated_sequence)
def main():
parser = argparse.ArgumentParser(description="Run the language model with specified parameters.")
parser.add_argument('-t', '--temperature', type=float, default=0.5, help='Temperature for sampling.')
parser.add_argument('-f', '--file', type=str, help='File containing input text.')
parser.add_argument('-p', '--text', type=str, help='Direct input text.')
parser.add_argument('-n', '--length', type=int, default=50, help='length predictions to consider.')
parser.add_argument('-m', '--model', type=str, required=True, help='Address of the FastText model file.')
args = parser.parse_args()
# Load the model
model = fasttext.load_model(args.model)
input_text = ''
if args.file:
with open(args.file, 'r') as file:
input_text = file.read()
elif args.text:
input_text = args.text
else:
print("No input text provided. Please use -f to specify a file or -p for direct text input.")
return
# Generate and print the response
response = generate_response(model, input_text + " [RESPONSE]", sequence_length=args.length, temperature=args.temperature)
print("\nResponse:")
print(response)
if __name__ == "__main__":
main()
python conversation_app.py -t TEMPERATURE -f FILE -p TEXT -k TOPK -m MODEL_PATH
-t TEMPERATURE
or--temperature TEMPERATURE
: Sets the temperature for predictions. A higher temperature results in more diverse results. Default is 0.5.-f FILE
or--file FILE
: Specifies a path to a file containing input text. The script will read this file and use its contents as input.-p TEXT
or--text TEXT
: Directly provide the input text as a string.-n LENGTH
or--length TOPK
: Determines the number of top predictions to consider for the model's output. Default is 50.-m MODEL_PATH
or--model MODEL_PATH
: The path to the FastText model file (required).
Example
python conversation_app.py -t 0.7 -p "What is the future of AI?" -n 40 -m /path/to/model.bin
This command sets the temperature to 0.7, uses the provided question as input, considers the top 40 predictions, and specifies the model file path.
Note
- The script's output depends on the quality and training of the FastText model used.
- Ensure the specified model file path and input file path (if used) are correct.