results

This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0785
  • Accuracy: 0.9859
  • F1: 0.9821
  • Precision: 0.9784
  • Recall: 0.9859

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 12
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 0.125 25 1.5465 0.4375 0.2954 0.2488 0.4375
No log 0.25 50 0.6815 0.7484 0.7144 0.7826 0.7484
No log 0.375 75 0.5321 0.8281 0.7816 0.7651 0.8281
No log 0.5 100 0.3030 0.9125 0.9002 0.9154 0.9125
No log 0.625 125 0.1586 0.9625 0.9587 0.9561 0.9625
No log 0.75 150 0.0844 0.9781 0.9743 0.9710 0.9781
No log 0.875 175 0.0785 0.9859 0.9821 0.9784 0.9859

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.0
  • Tokenizers 0.21.0
Downloads last month
3
Safetensors
Model size
150M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for ccaug/results

Finetuned
(439)
this model