results
This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0785
- Accuracy: 0.9859
- F1: 0.9821
- Precision: 0.9784
- Recall: 0.9859
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 12
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 0.125 | 25 | 1.5465 | 0.4375 | 0.2954 | 0.2488 | 0.4375 |
No log | 0.25 | 50 | 0.6815 | 0.7484 | 0.7144 | 0.7826 | 0.7484 |
No log | 0.375 | 75 | 0.5321 | 0.8281 | 0.7816 | 0.7651 | 0.8281 |
No log | 0.5 | 100 | 0.3030 | 0.9125 | 0.9002 | 0.9154 | 0.9125 |
No log | 0.625 | 125 | 0.1586 | 0.9625 | 0.9587 | 0.9561 | 0.9625 |
No log | 0.75 | 150 | 0.0844 | 0.9781 | 0.9743 | 0.9710 | 0.9781 |
No log | 0.875 | 175 | 0.0785 | 0.9859 | 0.9821 | 0.9784 | 0.9859 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.4.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for ccaug/results
Base model
answerdotai/ModernBERT-base