File size: 5,047 Bytes
17cc791 d110207 6edcc8c d110207 806db6e c2ab321 17cc791 6edcc8c 4206a1c 806db6e ae60e00 4206a1c 6edcc8c 4206a1c ae60e00 6edcc8c ae60e00 6edcc8c ae60e00 6edcc8c ae60e00 4206a1c ae60e00 4206a1c 6edcc8c 090681b 4206a1c 6edcc8c 806db6e 6edcc8c 57767ac 6edcc8c 57767ac 6edcc8c 4206a1c 57767ac 6edcc8c 57767ac 6edcc8c 57767ac ae60e00 4206a1c 57767ac a9e095b 6edcc8c 57767ac 4206a1c 9faf4eb 045b84c 9faf4eb 4206a1c 090681b a9e095b 4206a1c 9faf4eb 4206a1c 715b737 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
---
language:
- zh
tags:
- SequenceClassification
- 古文
- 文言文
- ancient
- classical
- letter
- 书信标题
license: cc-by-nc-sa-4.0
---
# <font color="IndianRed"> BertForSequenceClassification model (Classical Chinese) </font>
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1jVu2LrNwkLolItPALKGNjeT6iCfzF8Ic?usp=sharing/)
This BertForSequenceClassification Classical Chinese model is intended to predict whether a Classical Chinese sentence is <font color="IndianRed"> a letter title (书信标题) </font> or not. This model is first inherited from the BERT base Chinese model (MLM), and finetuned using a large corpus of Classical Chinese language (3GB textual dataset), then concatenated with the BertForSequenceClassification architecture to perform a binary classification task.
* <font color="Salmon"> Labels: 0 = non-letter, 1 = letter </font>
## <font color="IndianRed"> Model description </font>
The BertForSequenceClassification model architecture inherits the BERT base model and concatenates a fully-connected linear layer to perform a binary-class classification task.More precisely, it
was pretrained with two objectives:
- Masked language modeling (MLM): The masked language modeling architecture randomly masks 15% of the words in the inputs, and the model is trained to predict the masked words. The BERT base model uses this MLM architecture and is pre-trained on a large corpus of data. BERT is proven to produce robust word embedding and can capture rich contextual and semantic relationships. Our model inherits the publicly available pre-trained BERT Chinese model trained on modern Chinese data. To perform a Classical Chinese letter classification task, we first finetuned the model using a large corpus of Classical Chinese data (3GB textual data), and then connected it to the BertForSequenceClassification architecture for Classical Chinese letter classification.
- Sequence classification: the model concatenates a fully-connected linear layer to output the probability of each class. In our binary classification task, the final linear layer has two classes.
## <font color="IndianRed"> Intended uses & limitations </font>
Note that this model is primiarly aimed at predicting whether a Classical Chinese sentence is a letter title (书信标题) or not.
### <font color="IndianRed"> How to use </font>
Note that this model is primiarly aimed at predicting whether a Classical Chinese sentence is a letter title (书信标题) or not.
Here is how to use this model to get the features of a given text in PyTorch:
<font color="cornflowerblue"> 1. Import model and packages </font>
```python
from transformers import BertTokenizer
from transformers import BertForSequenceClassification
import torch
from numpy import exp
import numpy as np
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
model = BertForSequenceClassification.from_pretrained('cbdb/ClassicalChineseLetterClassification',
output_attentions=False,
output_hidden_states=False)
```
<font color="cornflowerblue"> 2. Make a prediction </font>
```python
max_seq_len = 512
def softmax(vector):
e = exp(vector)
return e / e.sum()
def predict_class(test_sen):
tokens_test = tokenizer.encode_plus(
test_sen,
add_special_tokens=True,
return_attention_mask=True,
padding=True,
max_length=max_seq_len,
return_tensors='pt',
truncation=True
)
test_seq = torch.tensor(tokens_test['input_ids'])
test_mask = torch.tensor(tokens_test['attention_mask'])
# get predictions for test data
with torch.no_grad():
outputs = model(test_seq, test_mask)
outputs = outputs.logits.detach().cpu().numpy()
softmax_score = softmax(outputs)
pred_class_dict = {k:v for k, v in zip(label2idx.keys(), softmax_score[0])}
return pred_class_dict
label2idx = {'not-letter': 0,'letter': 1}
idx2label = {v:k for k,v in label2idx.items()}
```
<font color="cornflowerblue"> 3. Change your sentence here </font>
```python
label2idx = {'not-letter': 0,'letter': 1}
idx2label = {v:k for k,v in label2idx.items()}
test_sen = '上丞相康思公書'
pred_class_proba = predict_class(test_sen)
print(f'The predicted probability for the {list(pred_class_proba.keys())[0]} class: {list(pred_class_proba.values())[0]}')
print(f'The predicted probability for the {list(pred_class_proba.keys())[1]} class: {list(pred_class_proba.values())[1]}')
```
<font color="IndianRed"> >>> </font> The predicted probability for the not-letter class: 0.002029061783105135
<font color="IndianRed"> >>> </font> The predicted probability for the letter class: 0.9979709386825562
```python
pred_class = idx2label[np.argmax(list(pred_class_proba.values()))]
print(f'The predicted class is: {pred_class}')
```
<font color="IndianRed"> >>> </font> The predicted class is: letter
Author: Queenie Luo (queenieluo[at]g.harvard.edu) |