cbdb commited on
Commit
4206a1c
1 Parent(s): 806db6e

update README text color

Browse files
Files changed (1) hide show
  1. README.md +13 -11
README.md CHANGED
@@ -12,13 +12,13 @@ tags:
12
  license: cc-by-nc-sa-4.0
13
  ---
14
 
15
- # BertForSequenceClassification model (Classical Chinese)
16
  [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1jVu2LrNwkLolItPALKGNjeT6iCfzF8Ic?usp=sharing/)
17
 
18
- This BertForSequenceClassification Classical Chinese model is intended to predict whether a Classical Chinese sentence is a letter title (书信标题) or not. This model is first inherited from the BERT base Chinese model (MLM), and finetuned using a large corpus of Classical Chinese language (3GB textual dataset), then concatenated with the BertForSequenceClassification architecture to perform a binary classification task.
19
- * Labels: 0 = non-letter, 1 = letter
20
 
21
- ## Model description
22
 
23
  The BertForSequenceClassification model architecture inherits the BERT base model and concatenates a fully-connected linear layer to perform a binary-class classification task.More precisely, it
24
  was pretrained with two objectives:
@@ -27,17 +27,17 @@ was pretrained with two objectives:
27
 
28
  - Sequence classification: the model concatenates a fully-connected linear layer to output the probability of each class. In our binary classification task, the final linear layer has two classes.
29
 
30
- ## Intended uses & limitations
31
 
32
  Note that this model is primiarly aimed at predicting whether a Classical Chinese sentence is a letter title (书信标题) or not.
33
 
34
- ### How to use
35
 
36
  Note that this model is primiarly aimed at predicting whether a Classical Chinese sentence is a letter title (书信标题) or not.
37
 
38
  Here is how to use this model to get the features of a given text in PyTorch:
39
 
40
- 1. Import model and packages
41
  ```python
42
  from transformers import BertTokenizer
43
  from transformers import BertForSequenceClassification
@@ -51,7 +51,7 @@ model = BertForSequenceClassification.from_pretrained('cbdb/ClassicalChineseLett
51
  output_hidden_states=False)
52
  ```
53
 
54
- 2. Make a prediction
55
  ```python
56
  max_seq_len = 512
57
 
@@ -86,7 +86,7 @@ label2idx = {'not-letter': 0,'letter': 1}
86
  idx2label = {v:k for k,v in label2idx.items()}
87
  ```
88
 
89
- 3. Change your sentence here
90
  ```python
91
  label2idx = {'not-letter': 0,'letter': 1}
92
  idx2label = {v:k for k,v in label2idx.items()}
@@ -97,8 +97,10 @@ print(f'The predicted probability for the {list(pred_class_proba.keys())[0]} cla
97
  print(f'The predicted probability for the {list(pred_class_proba.keys())[1]} class: {list(pred_class_proba.values())[1]}')
98
  >>> The predicted probability for the not-letter class: 0.002029061783105135
99
  >>> The predicted probability for the letter class: 0.9979709386825562
100
-
 
101
  pred_class = idx2label[np.argmax(list(pred_class_proba.values()))]
102
  print(f'The predicted class is: {pred_class}')
103
  >>> The predicted class is: letter
104
- ```
 
 
12
  license: cc-by-nc-sa-4.0
13
  ---
14
 
15
+ # <font color="IndianRed"> BertForSequenceClassification model (Classical Chinese) </font>
16
  [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1jVu2LrNwkLolItPALKGNjeT6iCfzF8Ic?usp=sharing/)
17
 
18
+ This BertForSequenceClassification Classical Chinese model is intended to predict whether a Classical Chinese sentence is <font color="IndianRed"> a letter title (书信标题) </font> or not. This model is first inherited from the BERT base Chinese model (MLM), and finetuned using a large corpus of Classical Chinese language (3GB textual dataset), then concatenated with the BertForSequenceClassification architecture to perform a binary classification task.
19
+ * <font color="Salmon"> Labels: 0 = non-letter, 1 = letter </font>
20
 
21
+ ## <font color="IndianRed"> Model description </font>
22
 
23
  The BertForSequenceClassification model architecture inherits the BERT base model and concatenates a fully-connected linear layer to perform a binary-class classification task.More precisely, it
24
  was pretrained with two objectives:
 
27
 
28
  - Sequence classification: the model concatenates a fully-connected linear layer to output the probability of each class. In our binary classification task, the final linear layer has two classes.
29
 
30
+ ## <font color="IndianRed"> Intended uses & limitations </font>
31
 
32
  Note that this model is primiarly aimed at predicting whether a Classical Chinese sentence is a letter title (书信标题) or not.
33
 
34
+ ### <font color="IndianRed"> How to use </font>
35
 
36
  Note that this model is primiarly aimed at predicting whether a Classical Chinese sentence is a letter title (书信标题) or not.
37
 
38
  Here is how to use this model to get the features of a given text in PyTorch:
39
 
40
+ <font color="cornflowerblue"> 1. Import model and packages </font>
41
  ```python
42
  from transformers import BertTokenizer
43
  from transformers import BertForSequenceClassification
 
51
  output_hidden_states=False)
52
  ```
53
 
54
+ <font color="cornflowerblue"> 2. Make a prediction </font>
55
  ```python
56
  max_seq_len = 512
57
 
 
86
  idx2label = {v:k for k,v in label2idx.items()}
87
  ```
88
 
89
+ <font color="cornflowerblue"> 3. Change your sentence here </font>
90
  ```python
91
  label2idx = {'not-letter': 0,'letter': 1}
92
  idx2label = {v:k for k,v in label2idx.items()}
 
97
  print(f'The predicted probability for the {list(pred_class_proba.keys())[1]} class: {list(pred_class_proba.values())[1]}')
98
  >>> The predicted probability for the not-letter class: 0.002029061783105135
99
  >>> The predicted probability for the letter class: 0.9979709386825562
100
+ ```
101
+ ```python
102
  pred_class = idx2label[np.argmax(list(pred_class_proba.values()))]
103
  print(f'The predicted class is: {pred_class}')
104
  >>> The predicted class is: letter
105
+ ```
106
+