Model Card for Model ID
This modelcard aims to be a base template for new models. It has been generated using this raw template.
Model Details
Model Description
- Developed by: catlove
- Shared by [optional]: catlove
- Model type: bert
- Language(s) (NLP): multi-language
- License: [More Information Needed]
- Finetuned from model [optional]: xlm-roberta-large
Uses
Direct Use
class CFG:
print_freq = 500
num_workers = 0
model = "xlm-roberta-large"
tokenizer = AutoTokenizer.from_pretrained(model)
gradient_checkpointing = False
num_cycles = 0.5
warmup_ratio = 0.1
epochs = 3
encoder_lr = 1e-5
decoder_lr = 1e-4
eps = 1e-6
betas = (0.9, 0.999)
batch_size = 32
weight_decay = 0.01
max_grad_norm = 0.012
max_len = 512
n_folds = 5
seed = 42
class custom_model(nn.Module):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
self.config = AutoConfig.from_pretrained(cfg.model, output_hidden_states = True)
self.config.hidden_dropout = 0.0
self.config.hidden_dropout_prob = 0.0
self.config.attention_dropout = 0.0
self.config.attention_probs_dropout_prob = 0.0
self.model = AutoModel.from_pretrained(cfg.model, config = self.config)
if self.cfg.gradient_checkpointing:
self.model.gradient_checkpointing_enable()
self.pool = MeanPooling()
self.fc = nn.Linear(self.config.hidden_size, 1)
self._init_weights(self.fc)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def feature(self, inputs):
outputs = self.model(**inputs)
last_hidden_state = outputs.last_hidden_state
feature = self.pool(last_hidden_state, inputs['attention_mask'])
return feature
def forward(self, inputs):
feature = self.feature(inputs)
output = self.fc(feature)
return output
model = custom_model(CFG)
model.load_state_dict(torch.load('./model_saved/custom_model_weights.pth')['model'])
Evaluation
Our CV score is 0.3797 using a threshold of 0.029.
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.