lsg-ner-phrases-16384

This model is a fine-tuned version of lsg-base-16384-juri on the cassandra-themis/ner-phrases dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0058
  • New Sentence Precision: 0.9955
  • New Sentence Recall: 0.9932
  • New Sentence F1: 0.9943
  • New Sentence Number: 442
  • Overall Precision: 0.9955
  • Overall Recall: 0.9932
  • Overall F1: 0.9943
  • Overall Accuracy: 0.9996

Usage

from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
import re

model_path = "cassandra-themis/lsg-ner-phrases-16384"

model = AutoModelForTokenClassification.from_pretrained(model_path, trust_remote_code=True, use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, use_auth_token=True)
ner_pipe = pipeline("token-classification", model=model, tokenizer=tokenizer)


document = "My document"
document_flattened = re.sub(r'(\s|\t|\n)+', r' ', document).strip()

prediction = ner_pipe(document_flattened, aggregation_strategy="simple")

sentences = []
for i in range(len(prediction) - 1):
    sentences.append(document_flattened[prediction[i]["start"]:prediction[i+1]["start"]].strip())
print("\n".join(sentences))

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 2
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 150.0

Training results

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.0
  • Tokenizers 0.11.6
Downloads last month
12
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support model that require custom code execution.