Files changed (1) hide show
  1. README.md +50 -0
README.md ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model Card: carsonpoole/binary-embeddings
2
+
3
+ ## Model Description
4
+
5
+ The `carsonpoole/binary-embeddings` model is designed to generate binary embeddings for text data. This model is useful for tasks that require efficient storage and retrieval of text representations, such as information retrieval, document classification, and clustering.
6
+
7
+ ## Model Details
8
+
9
+ - **Model Name**: Binary Embeddings
10
+ - **Model ID**: carsonpoole/binary-embeddings
11
+ - **Model Type**: Embedding Model
12
+ - **License**: [MIT License](https://opensource.org/licenses/MIT)
13
+ - **Author**: Carson Poole
14
+
15
+ ## Intended Use
16
+
17
+ ### Primary Use Case
18
+
19
+ The primary use case for this model is to generate binary embeddings for text data. These embeddings can be used in various downstream tasks, including:
20
+
21
+ - Information retrieval
22
+ - Document classification
23
+ - Clustering
24
+
25
+ ### Input
26
+
27
+ The model expects input text data in the form of strings.
28
+
29
+ ### Output
30
+
31
+ The model outputs binary embeddings, which are fixed-size binary vectors representing the input text.
32
+
33
+ ## How to Use
34
+
35
+ To use this model, you can load it with the `transformers` library and generate embeddings for your text data. Here is an example:
36
+
37
+ ```python
38
+ from transformers import AutoTokenizer, AutoModel
39
+
40
+ # Load the tokenizer and model
41
+ tokenizer = AutoTokenizer.from_pretrained("carsonpoole/binary-embeddings")
42
+ model = AutoModel.from_pretrained("carsonpoole/binary-embeddings")
43
+
44
+ # Tokenize the input text
45
+ input_text = "This is an example sentence."
46
+ inputs = tokenizer(input_text, return_tensors="pt")
47
+
48
+ # Generate embeddings
49
+ with torch.no_grad():
50
+ embeddings = model(**inputs).last_hidden_state