Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/models-cards#model-card-metadata)

Twitter 2021 124M (RoBERTa-base)

This is a RoBERTa-base model trained on 123.86M tweets until the end of 2021. More details and performance scores are available in the TimeLMs paper.

Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.

For other models trained until different periods, check this table.

Preprocess Text

Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed here.

def preprocess(text):
    new_text = []
    for t in text.split(" "):
        t = '@user' if t.startswith('@') and len(t) > 1 else t
        t = 'http' if t.startswith('http') else t
        new_text.append(t)
    return " ".join(new_text)

Example Masked Language Model

from transformers import pipeline, AutoTokenizer

MODEL = "cardiffnlp/twitter-roberta-base-2021-124m"
fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL)
tokenizer = AutoTokenizer.from_pretrained(MODEL)

def print_candidates():
    for i in range(5):
        token = tokenizer.decode(candidates[i]['token'])
        score = candidates[i]['score']
        print("%d) %.5f %s" % (i+1, score, token))

texts = [
    "So glad I'm <mask> vaccinated.",
    "I keep forgetting to bring a <mask>.",
    "Looking forward to watching <mask> Game tonight!",
]
for text in texts:
    t = preprocess(text)
    print(f"{'-'*30}\n{t}")
    candidates = fill_mask(t)
    print_candidates()

Output:

------------------------------
So glad I'm <mask> vaccinated.
1) 0.39613  fully
2) 0.26333  getting
3) 0.18988  not
4) 0.02312  still
5) 0.02099  already
------------------------------
I keep forgetting to bring a <mask>.
1) 0.08356  mask
2) 0.05696  book
3) 0.03505  bag
4) 0.02983  backpack
5) 0.02847  blanket
------------------------------
Looking forward to watching <mask> Game tonight!
1) 0.46618  the
2) 0.24042  The
3) 0.03216  End
4) 0.02925  Squid
5) 0.02610  this

Example Tweet Embeddings

from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np
from scipy.spatial.distance import cosine
from collections import Counter

def get_embedding(text):
  text = preprocess(text)
  encoded_input = tokenizer(text, return_tensors='pt')
  features = model(**encoded_input)
  features = features[0].detach().cpu().numpy() 
  features_mean = np.mean(features[0], axis=0) 
  return features_mean


MODEL = "cardiffnlp/twitter-roberta-base-2021-124m"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModel.from_pretrained(MODEL)

query = "The book was awesome"
tweets = ["I just ordered fried chicken 🐣", 
          "The movie was great",
          "What time is the next game?",
          "Just finished reading 'Embeddings in NLP'"]

sims = Counter()
for tweet in tweets:
    sim = 1 - cosine(get_embedding(query), get_embedding(tweet))
    sims[tweet] = sim

print('Most similar to: ', query)
print(f"{'-'*30}")
for idx, (tweet, sim) in enumerate(sims.most_common()):
    print("%d) %.5f %s" % (idx+1, sim, tweet))

Output:

Most similar to:  The book was awesome
------------------------------
1) 0.98969 The movie was great
2) 0.96102 Just finished reading 'Embeddings in NLP'
3) 0.95565 I just ordered fried chicken 🐣
4) 0.95041 What time is the next game?

Example Feature Extraction

from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np

MODEL = "cardiffnlp/twitter-roberta-base-2021-124m"
tokenizer = AutoTokenizer.from_pretrained(MODEL)

text = "Good night 😊"
text = preprocess(text)

# Pytorch
model = AutoModel.from_pretrained(MODEL)
encoded_input = tokenizer(text, return_tensors='pt')
features = model(**encoded_input)
features = features[0].detach().cpu().numpy() 
features_mean = np.mean(features[0], axis=0) 
#features_max = np.max(features[0], axis=0)

# # Tensorflow
# model = TFAutoModel.from_pretrained(MODEL)
# encoded_input = tokenizer(text, return_tensors='tf')
# features = model(encoded_input)
# features = features[0].numpy()
# features_mean = np.mean(features[0], axis=0) 
# #features_max = np.max(features[0], axis=0)
Downloads last month
245
Hosted inference API
Fill-Mask
Examples
Examples
Mask token: <mask>
This model can be loaded on the Inference API on-demand.