tweet-topic-21-single
This is a roBERTa-base model trained on ~124M tweets from January 2018 to December 2021 (see here), and finetuned for single-label topic classification on tweets. The original roBERTa-base model can be found here and the original reference paper is TweetEval. This model is suitable for English.
- Reference Paper: TimeLMs paper.
- Git Repo: TimeLMs official repository.
Labels: 0 -> arts_&culture 1 -> business&entrepreneurs 2 -> pop_culture 3 -> daily_life 4 -> sports&gaming 5 -> science&_technology
Full classification example
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
import numpy as np
from scipy.special import softmax
MODEL = f"antypasd/tweet-topic-21-single"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
# PT
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
class_mapping = model.config.id2label
text = "Tesla stock is on the rise!"
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(scores.shape[0]):
l = class_mapping[ranking[i]]
s = scores[ranking[i]]
print(f"{i+1}) {l} {np.round(float(s), 4)}")
Output:
1) business_&_entrepreneurs 0.8361
2) science_&_technology 0.0904
3) pop_culture 0.0288
4) daily_life 0.0178
5) arts_&_culture 0.0137
6) sports_&_gaming 0.0133