he-cantillation

This model is a fine-tuned version of openai/whisper-medium on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1114
  • Wer: 17.1345
  • Avg Precision Exact: 0.6531
  • Avg Recall Exact: 0.6641
  • Avg F1 Exact: 0.6580
  • Avg Precision Letter Shift: 0.6616
  • Avg Recall Letter Shift: 0.6724
  • Avg F1 Letter Shift: 0.6665
  • Avg Precision Word Level: 0.6676
  • Avg Recall Word Level: 0.6769
  • Avg F1 Word Level: 0.6717
  • Avg Precision Word Shift: 0.8665
  • Avg Recall Word Shift: 0.8803
  • Avg F1 Word Shift: 0.8727
  • Precision Median Exact: 0.8330
  • Recall Median Exact: 0.8604
  • F1 Median Exact: 0.8545
  • Precision Max Exact: 1.0
  • Recall Max Exact: 1.0
  • F1 Max Exact: 1.0
  • Precision Min Exact: 0.0
  • Recall Min Exact: 0.0
  • F1 Min Exact: 0.0
  • Precision Min Letter Shift: 0.0
  • Recall Min Letter Shift: 0.0
  • F1 Min Letter Shift: 0.0
  • Precision Min Word Level: 0.0
  • Recall Min Word Level: 0.0
  • F1 Min Word Level: 0.0
  • Precision Min Word Shift: 0.2
  • Recall Min Word Shift: 0.1429
  • F1 Min Word Shift: 0.1667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Avg Precision Exact Avg Recall Exact Avg F1 Exact Avg Precision Letter Shift Avg Recall Letter Shift Avg F1 Letter Shift Avg Precision Word Level Avg Recall Word Level Avg F1 Word Level Avg Precision Word Shift Avg Recall Word Shift Avg F1 Word Shift Precision Median Exact Recall Median Exact F1 Median Exact Precision Max Exact Recall Max Exact F1 Max Exact Precision Min Exact Recall Min Exact F1 Min Exact Precision Min Letter Shift Recall Min Letter Shift F1 Min Letter Shift Precision Min Word Level Recall Min Word Level F1 Min Word Level Precision Min Word Shift Recall Min Word Shift F1 Min Word Shift
3.4463 0.0620 100 3.2418 104.1520 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.0028 0.1240 200 1.7998 96.7251 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.9391 0.1860 300 0.9484 88.9474 0.0784 0.0913 0.0839 0.1095 0.1251 0.1163 0.1455 0.1667 0.1546 0.3273 0.4719 0.3849 0.08 0.0931 0.0851 0.2353 0.25 0.2424 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0769 0.1667 0.1176
0.786 0.2480 400 0.7401 81.8129 0.1117 0.1166 0.1137 0.1342 0.1400 0.1365 0.1591 0.1649 0.1612 0.3595 0.4136 0.3816 0.1076 0.1077 0.1076 0.4138 0.4286 0.4211 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5189 0.3100 500 0.5562 66.4912 0.3001 0.3145 0.3066 0.3201 0.3348 0.3268 0.3340 0.3454 0.3391 0.4716 0.5012 0.4844 0.3478 0.3618 0.3529 0.6667 0.7222 0.6364 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0714 0.0769 0.0741
0.3767 0.3720 600 0.4395 55.7310 0.3506 0.3479 0.3482 0.3735 0.3711 0.3712 0.3813 0.3780 0.3785 0.5910 0.5980 0.5922 0.4097 0.4226 0.4259 0.8 0.8421 0.8205 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0741 0.0851
0.3089 0.4340 700 0.3508 44.0936 0.4179 0.4286 0.4227 0.4360 0.4470 0.4410 0.4433 0.4523 0.4473 0.6664 0.6895 0.6769 0.5256 0.5455 0.5375 0.8276 0.85 0.8136 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.15 0.125 0.1364
0.2818 0.4960 800 0.2893 37.6023 0.4850 0.5021 0.4928 0.5045 0.5217 0.5123 0.5119 0.5256 0.5181 0.7129 0.7333 0.7221 0.6036 0.6364 0.6191 0.9231 0.9048 0.9057 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2341 0.5580 900 0.2547 32.6901 0.5273 0.5442 0.5351 0.5457 0.5628 0.5536 0.5531 0.5687 0.5603 0.7361 0.7568 0.7455 0.6190 0.65 0.6266 0.9310 0.9310 0.9310 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1905 0.1538 0.1702
0.1907 0.6200 1000 0.2243 31.7544 0.5673 0.5839 0.5749 0.5784 0.5948 0.5858 0.5848 0.5969 0.5902 0.7580 0.7782 0.7673 0.6878 0.7083 0.7042 0.9583 0.9583 0.9583 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0556 0.0526 0.0541
0.1923 0.6820 1100 0.2019 28.4795 0.5495 0.5558 0.5524 0.5664 0.5728 0.5693 0.5728 0.5786 0.5754 0.7993 0.8032 0.7997 0.6878 0.6927 0.6948 0.9565 0.9565 0.9565 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2381 0.1724 0.2000
0.1822 0.7440 1200 0.1793 27.1930 0.6045 0.6202 0.6117 0.6204 0.6361 0.6276 0.6255 0.6377 0.6311 0.7823 0.7982 0.7895 0.72 0.755 0.7310 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1429 0.1034 0.1200
0.1721 0.8060 1300 0.1672 24.1520 0.6115 0.6306 0.6203 0.6203 0.6400 0.6294 0.6250 0.6426 0.6331 0.8062 0.8274 0.8160 0.755 0.8006 0.7755 0.9655 1.0 0.9825 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.15 0.1034 0.1224
0.1573 0.8679 1400 0.1528 21.3450 0.6228 0.6391 0.6303 0.6346 0.6508 0.6421 0.6381 0.6532 0.6450 0.8210 0.8365 0.8280 0.7643 0.8155 0.8074 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0370 0.0385
0.1521 0.9299 1500 0.1354 20.0 0.6349 0.6502 0.6420 0.6459 0.6618 0.6533 0.6498 0.6637 0.6562 0.8392 0.8552 0.8464 0.7713 0.8038 0.8082 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.15 0.1034 0.1224
0.1492 0.9919 1600 0.1303 18.7719 0.6603 0.6764 0.6678 0.6703 0.6868 0.6780 0.6750 0.6899 0.6819 0.8516 0.8677 0.8590 0.8165 0.8297 0.8165 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1481 0.1702
0.1072 1.0539 1700 0.1243 18.1871 0.6240 0.6377 0.6303 0.6320 0.6461 0.6385 0.6388 0.6515 0.6446 0.8351 0.8490 0.8414 0.8 0.8192 0.8156 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0714 0.0741 0.0727
0.0983 1.1159 1800 0.1174 18.0117 0.6380 0.6529 0.6449 0.6463 0.6611 0.6532 0.6511 0.6633 0.6566 0.8593 0.8745 0.8661 0.8209 0.8297 0.8284 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1379 0.1633
0.0916 1.1779 1900 0.1122 17.8363 0.6601 0.6733 0.6662 0.6698 0.6829 0.6758 0.6746 0.6863 0.6799 0.8585 0.8734 0.8652 0.8261 0.8604 0.8444 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1429 0.1667
0.0854 1.2399 2000 0.1114 17.1345 0.6531 0.6641 0.6580 0.6616 0.6724 0.6665 0.6676 0.6769 0.6717 0.8665 0.8803 0.8727 0.8330 0.8604 0.8545 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1429 0.1667

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu126
  • Datasets 2.12.0
  • Tokenizers 0.20.1
Downloads last month
14
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for cantillation/Teamim-medium_Random_WeightDecay-0.005_Augmented_New-Data_date-06-03-2025

Finetuned
(559)
this model