model documentation
#2
by
nazneen
- opened
README.md
CHANGED
@@ -1,51 +1,169 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
```python
|
8 |
-
import
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
'''
|
17 |
-
labels:
|
18 |
-
0 -- negative
|
19 |
-
1 -- neutral
|
20 |
-
2 -- positive
|
21 |
-
'''
|
22 |
-
|
23 |
-
# prepare exemplar sentences
|
24 |
-
batch_sentences = [
|
25 |
-
"in his first stab at the form , jacquot takes a slightly anarchic approach that works only sporadically .",
|
26 |
-
"a valueless kiddie paean to pro basketball underwritten by the nba .",
|
27 |
-
"a very well-made , funny and entertaining picture .",
|
28 |
-
]
|
29 |
-
|
30 |
-
# prepare input
|
31 |
-
inputs = tokenizer(batch_sentences, max_length=256, truncation=True, padding=True, return_tensors='pt')
|
32 |
-
input_ids, attention_mask = inputs.input_ids, inputs.attention_mask
|
33 |
-
|
34 |
-
# make predictions
|
35 |
-
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
36 |
-
predictions = torch.argmax(outputs.logits, dim = -1)
|
37 |
-
print (predictions)
|
38 |
-
# tensor([1, 0, 2])
|
39 |
-
```
|
40 |
-
|
41 |
-
## Citation:
|
42 |
-
If you find this model useful, please kindly cite our model as
|
43 |
-
|
44 |
-
```bibtex
|
45 |
-
@misc{susstmobilebert,
|
46 |
-
author = {Su, Yixuan},
|
47 |
-
title = {A MobileBERT Fine-tuned on SST},
|
48 |
-
howpublished = {\url{https://huggingface.co/cambridgeltl/sst_mobilebert-uncased}},
|
49 |
-
year = 2022
|
50 |
-
}
|
51 |
-
```
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- mobilebert
|
4 |
+
---
|
5 |
+
# Model Card for sst_mobilebert-uncased
|
6 |
+
|
7 |
+
# Model Details
|
8 |
+
|
9 |
+
## Model Description
|
10 |
+
|
11 |
+
|
12 |
+
- **Developed by:** Zhiqing Sun1∗ , Hongkun Yu2 , Xiaodan Song2 , Renjie Liu2 , Yiming Yang1 , Denny Zhou
|
13 |
+
- **Shared by [Optional]:** [Vasily Shamporov](https://huggingface.co/vshampor)
|
14 |
+
- **Model type:** Text Classification
|
15 |
+
- **Language(s) (NLP):** More information needed
|
16 |
+
- **License:** More information needed
|
17 |
+
- **Related Models:** MobileBERT
|
18 |
+
- **Parent Model:** BERT
|
19 |
+
- **Resources for more information:**
|
20 |
+
- [Associated Paper](https://arxiv.org/pdf/2004.02984.pdf)
|
21 |
+
|
22 |
+
# Uses
|
23 |
+
|
24 |
+
|
25 |
+
## Direct Use
|
26 |
+
|
27 |
+
This model can be used for the task of SequenceClassification
|
28 |
+
|
29 |
+
## Downstream Use [Optional]
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Out-of-Scope Use
|
34 |
+
|
35 |
+
The model should not be used to intentionally create hostile or alienating environments for people.
|
36 |
+
|
37 |
+
# Bias, Risks, and Limitations
|
38 |
+
|
39 |
+
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
|
40 |
+
|
41 |
+
|
42 |
+
## Recommendations
|
43 |
+
|
44 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
45 |
+
MobileBERT is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right rather than the left. See [MobileBERT model documentation](https://huggingface.co/docs/transformers/main/en/model_doc/mobilebert#transformers.MobileBertForSequenceClassification) for more information.
|
46 |
+
|
47 |
+
|
48 |
+
# Training Details
|
49 |
+
|
50 |
+
## Training Data
|
51 |
+
|
52 |
+
More information needed
|
53 |
+
|
54 |
+
## Training Procedure
|
55 |
+
|
56 |
+
|
57 |
+
### Preprocessing
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
### Speeds, Sizes, Times
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
# Evaluation
|
66 |
+
|
67 |
+
|
68 |
+
## Testing Data, Factors & Metrics
|
69 |
+
|
70 |
+
### Testing Data
|
71 |
+
|
72 |
+
More information needed
|
73 |
+
|
74 |
+
### Factors
|
75 |
+
|
76 |
+
|
77 |
+
### Metrics
|
78 |
+
|
79 |
+
More information needed
|
80 |
+
## Results
|
81 |
+
|
82 |
+
More information needed
|
83 |
+
|
84 |
+
# Model Examination
|
85 |
+
|
86 |
+
More information needed
|
87 |
+
|
88 |
+
# Environmental Impact
|
89 |
+
|
90 |
+
|
91 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
92 |
+
|
93 |
+
- **Hardware Type:** More information needed
|
94 |
+
- **Hours used:** More information needed
|
95 |
+
- **Cloud Provider:** More information needed
|
96 |
+
- **Compute Region:** More information needed
|
97 |
+
- **Carbon Emitted:** More information needed
|
98 |
+
|
99 |
+
# Technical Specifications [optional]
|
100 |
+
|
101 |
+
## Model Architecture and Objective
|
102 |
+
|
103 |
+
More information needed
|
104 |
+
|
105 |
+
## Compute Infrastructure
|
106 |
+
|
107 |
+
More information needed
|
108 |
+
|
109 |
+
### Hardware
|
110 |
+
|
111 |
+
More information needed
|
112 |
+
|
113 |
+
### Software
|
114 |
+
More information needed
|
115 |
+
|
116 |
+
# Citation
|
117 |
+
|
118 |
+
|
119 |
+
**BibTeX:**
|
120 |
+
```
|
121 |
+
@misc{https://doi.org/10.48550/arxiv.2004.02984,
|
122 |
+
doi = {10.48550/ARXIV.2004.02984},
|
123 |
+
|
124 |
+
url = {https://arxiv.org/abs/2004.02984},
|
125 |
+
|
126 |
+
author = {Sun, Zhiqing and Yu, Hongkun and Song, Xiaodan and Liu, Renjie and Yang, Yiming and Zhou, Denny},
|
127 |
+
|
128 |
+
keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
129 |
+
|
130 |
+
title = {MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices},
|
131 |
+
|
132 |
+
publisher = {arXiv},
|
133 |
+
|
134 |
+
year = {2020},
|
135 |
+
```
|
136 |
+
|
137 |
+
|
138 |
+
# Glossary [optional]
|
139 |
+
More information needed
|
140 |
+
|
141 |
+
# More Information [optional]
|
142 |
+
|
143 |
+
More information needed
|
144 |
+
|
145 |
+
# Model Card Authors [optional]
|
146 |
+
|
147 |
+
|
148 |
+
Language Technology Lab @University of Cambridge in collaboration with Ezi Ozoani and the Hugging Face team
|
149 |
+
|
150 |
+
# Model Card Contact
|
151 |
+
|
152 |
+
More information needed
|
153 |
+
|
154 |
+
# How to Get Started with the Model
|
155 |
+
|
156 |
+
Use the code below to get started with the model.
|
157 |
+
|
158 |
+
<details>
|
159 |
+
<summary> Click to expand </summary>
|
160 |
|
161 |
```python
|
162 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
163 |
+
|
164 |
+
tokenizer = AutoTokenizer.from_pretrained("cambridgeltl/sst_mobilebert-uncased")
|
165 |
+
|
166 |
+
model = AutoModelForSequenceClassification.from_pretrained("cambridgeltl/sst_mobilebert-uncased")
|
167 |
+
|
168 |
+
```
|
169 |
+
</details>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|