YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
language: multilingual
tags:
- biomedical
- lexical-semantics
- cross-lingual
datasets:
- UMLS
[news] A cross-lingual extension of SapBERT will appear in the main onference of ACL 2021!
[news] SapBERT will appear in the conference proceedings of NAACL 2021!
SapBERT-XLMR
SapBERT (Liu et al. 2021) trained with UMLS 2020AB, using xlm-roberta-large as the base model. Please use [CLS] as the representation of the input.
Extracting embeddings from SapBERT
The following script converts a list of strings (entity names) into embeddings.
import numpy as np
import torch
from tqdm.auto import tqdm
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext")
model = AutoModel.from_pretrained("cambridgeltl/SapBERT-from-PubMedBERT-fulltext").cuda()
# replace with your own list of entity names
all_names = ["covid-19", "Coronavirus infection", "high fever", "Tumor of posterior wall of oropharynx"]
bs = 128 # batch size during inference
all_embs = []
for i in tqdm(np.arange(0, len(all_names), bs)):
toks = tokenizer.batch_encode_plus(all_names[i:i+bs],
padding="max_length",
max_length=25,
truncation=True,
return_tensors="pt")
toks_cuda = {}
for k,v in toks.items():
toks_cuda[k] = v.cuda()
cls_rep = model(**toks_cuda)[0][:,0,:] # use CLS representation as the embedding
all_embs.append(cls_rep.cpu().detach().numpy())
all_embs = np.concatenate(all_embs, axis=0)
For more details about training and eval, see SapBERT github repo.
Citation
@inproceedings{liu2021learning,
title={Learning Domain-Specialised Representations for Cross-Lingual Biomedical Entity Linking},
author={Liu, Fangyu and Vuli{\'c}, Ivan and Korhonen, Anna and Collier, Nigel},
booktitle={Proceedings of ACL-IJCNLP 2021},
month = aug,
year={2021}
}
- Downloads last month
- 151
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.