File size: 6,722 Bytes
f969973 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
---
license: mit
base_model: Harveenchadha/vakyansh-wav2vec2-tamil-tam-250
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vakyansh-wav2vec2-tamil-tam-250-audio-abuse-feature
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vakyansh-wav2vec2-tamil-tam-250-audio-abuse-feature
This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-tamil-tam-250](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-tamil-tam-250) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6061
- Accuracy: 0.7412
- Macro F1-score: 0.6531
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1-score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------:|
| 6.7458 | 0.77 | 10 | 6.7472 | 0.0 | 0.0 |
| 6.7056 | 1.54 | 20 | 6.6488 | 0.0 | 0.0 |
| 6.6158 | 2.31 | 30 | 6.5180 | 0.6307 | 0.0917 |
| 6.4651 | 3.08 | 40 | 6.2887 | 0.7143 | 0.4167 |
| 6.2508 | 3.85 | 50 | 5.9094 | 0.7197 | 0.4185 |
| 5.8959 | 4.62 | 60 | 5.5362 | 0.7197 | 0.4185 |
| 5.6179 | 5.38 | 70 | 5.2347 | 0.7197 | 0.4185 |
| 5.3048 | 6.15 | 80 | 4.9823 | 0.7197 | 0.4185 |
| 5.0858 | 6.92 | 90 | 4.7555 | 0.7197 | 0.4185 |
| 4.9195 | 7.69 | 100 | 4.5424 | 0.7197 | 0.4185 |
| 4.6747 | 8.46 | 110 | 4.3265 | 0.7197 | 0.4185 |
| 4.5861 | 9.23 | 120 | 4.1193 | 0.7197 | 0.4185 |
| 4.3397 | 10.0 | 130 | 3.9070 | 0.7197 | 0.4185 |
| 4.0926 | 10.77 | 140 | 3.6954 | 0.7197 | 0.4185 |
| 3.8859 | 11.54 | 150 | 3.4822 | 0.7197 | 0.4185 |
| 3.7254 | 12.31 | 160 | 3.2711 | 0.7197 | 0.4185 |
| 3.5303 | 13.08 | 170 | 3.0599 | 0.7197 | 0.4185 |
| 3.2531 | 13.85 | 180 | 2.8502 | 0.7197 | 0.4185 |
| 3.0184 | 14.62 | 190 | 2.6448 | 0.7197 | 0.4185 |
| 3.0006 | 15.38 | 200 | 2.4472 | 0.7197 | 0.4185 |
| 2.6674 | 16.15 | 210 | 2.2526 | 0.7197 | 0.4185 |
| 2.4455 | 16.92 | 220 | 2.0649 | 0.7197 | 0.4185 |
| 2.2702 | 17.69 | 230 | 1.8883 | 0.7197 | 0.4185 |
| 2.0536 | 18.46 | 240 | 1.7233 | 0.7197 | 0.4185 |
| 2.0643 | 19.23 | 250 | 1.5730 | 0.7197 | 0.4185 |
| 1.8006 | 20.0 | 260 | 1.4368 | 0.7197 | 0.4185 |
| 1.6975 | 20.77 | 270 | 1.3112 | 0.7197 | 0.4185 |
| 1.4407 | 21.54 | 280 | 1.2015 | 0.7197 | 0.4185 |
| 1.2971 | 22.31 | 290 | 1.1050 | 0.7197 | 0.4185 |
| 1.3202 | 23.08 | 300 | 1.0219 | 0.7197 | 0.4185 |
| 1.1292 | 23.85 | 310 | 0.9490 | 0.7197 | 0.4185 |
| 1.1055 | 24.62 | 320 | 0.8879 | 0.7197 | 0.4185 |
| 0.9817 | 25.38 | 330 | 0.8366 | 0.7197 | 0.4185 |
| 0.9296 | 26.15 | 340 | 0.7906 | 0.7197 | 0.4185 |
| 0.8306 | 26.92 | 350 | 0.7506 | 0.7197 | 0.4185 |
| 0.8303 | 27.69 | 360 | 0.7171 | 0.7197 | 0.4185 |
| 0.8421 | 28.46 | 370 | 0.6953 | 0.7197 | 0.4185 |
| 0.7964 | 29.23 | 380 | 0.6650 | 0.7197 | 0.4185 |
| 0.7528 | 30.0 | 390 | 0.6470 | 0.7197 | 0.4185 |
| 0.7305 | 30.77 | 400 | 0.6345 | 0.7197 | 0.4185 |
| 0.6702 | 31.54 | 410 | 0.6163 | 0.7385 | 0.4937 |
| 0.6416 | 32.31 | 420 | 0.6118 | 0.7547 | 0.5507 |
| 0.608 | 33.08 | 430 | 0.6086 | 0.7547 | 0.5507 |
| 0.6659 | 33.85 | 440 | 0.5981 | 0.7574 | 0.5949 |
| 0.5839 | 34.62 | 450 | 0.6068 | 0.7547 | 0.6570 |
| 0.6167 | 35.38 | 460 | 0.5894 | 0.7763 | 0.6479 |
| 0.5991 | 36.15 | 470 | 0.5947 | 0.7412 | 0.6531 |
| 0.5839 | 36.92 | 480 | 0.5938 | 0.7574 | 0.6771 |
| 0.5533 | 37.69 | 490 | 0.5922 | 0.7520 | 0.6399 |
| 0.4998 | 38.46 | 500 | 0.6203 | 0.7358 | 0.6625 |
| 0.5508 | 39.23 | 510 | 0.5865 | 0.7493 | 0.6278 |
| 0.5159 | 40.0 | 520 | 0.5963 | 0.7385 | 0.6670 |
| 0.5344 | 40.77 | 530 | 0.5946 | 0.7439 | 0.6420 |
| 0.5039 | 41.54 | 540 | 0.5979 | 0.7466 | 0.6526 |
| 0.5456 | 42.31 | 550 | 0.5999 | 0.7358 | 0.6707 |
| 0.4822 | 43.08 | 560 | 0.5845 | 0.7493 | 0.6437 |
| 0.4864 | 43.85 | 570 | 0.6035 | 0.7439 | 0.6779 |
| 0.4623 | 44.62 | 580 | 0.5961 | 0.7520 | 0.6519 |
| 0.475 | 45.38 | 590 | 0.6066 | 0.7439 | 0.6651 |
| 0.4887 | 46.15 | 600 | 0.6014 | 0.7466 | 0.6603 |
| 0.506 | 46.92 | 610 | 0.6012 | 0.7412 | 0.6604 |
| 0.5296 | 47.69 | 620 | 0.5986 | 0.7439 | 0.6503 |
| 0.5255 | 48.46 | 630 | 0.6003 | 0.7439 | 0.6503 |
| 0.4667 | 49.23 | 640 | 0.6038 | 0.7466 | 0.6553 |
| 0.4334 | 50.0 | 650 | 0.6061 | 0.7412 | 0.6531 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|