End of training
Browse files
README.md
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: Harveenchadha/vakyansh-wav2vec2-tamil-tam-250
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: vakyansh-wav2vec2-tamil-tam-250-audio-abuse-feature
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# vakyansh-wav2vec2-tamil-tam-250-audio-abuse-feature
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-tamil-tam-250](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-tamil-tam-250) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6061
|
21 |
+
- Accuracy: 0.7412
|
22 |
+
- Macro F1-score: 0.6531
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 2e-05
|
42 |
+
- train_batch_size: 16
|
43 |
+
- eval_batch_size: 16
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 4
|
46 |
+
- total_train_batch_size: 64
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 50
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1-score |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------:|
|
56 |
+
| 6.7458 | 0.77 | 10 | 6.7472 | 0.0 | 0.0 |
|
57 |
+
| 6.7056 | 1.54 | 20 | 6.6488 | 0.0 | 0.0 |
|
58 |
+
| 6.6158 | 2.31 | 30 | 6.5180 | 0.6307 | 0.0917 |
|
59 |
+
| 6.4651 | 3.08 | 40 | 6.2887 | 0.7143 | 0.4167 |
|
60 |
+
| 6.2508 | 3.85 | 50 | 5.9094 | 0.7197 | 0.4185 |
|
61 |
+
| 5.8959 | 4.62 | 60 | 5.5362 | 0.7197 | 0.4185 |
|
62 |
+
| 5.6179 | 5.38 | 70 | 5.2347 | 0.7197 | 0.4185 |
|
63 |
+
| 5.3048 | 6.15 | 80 | 4.9823 | 0.7197 | 0.4185 |
|
64 |
+
| 5.0858 | 6.92 | 90 | 4.7555 | 0.7197 | 0.4185 |
|
65 |
+
| 4.9195 | 7.69 | 100 | 4.5424 | 0.7197 | 0.4185 |
|
66 |
+
| 4.6747 | 8.46 | 110 | 4.3265 | 0.7197 | 0.4185 |
|
67 |
+
| 4.5861 | 9.23 | 120 | 4.1193 | 0.7197 | 0.4185 |
|
68 |
+
| 4.3397 | 10.0 | 130 | 3.9070 | 0.7197 | 0.4185 |
|
69 |
+
| 4.0926 | 10.77 | 140 | 3.6954 | 0.7197 | 0.4185 |
|
70 |
+
| 3.8859 | 11.54 | 150 | 3.4822 | 0.7197 | 0.4185 |
|
71 |
+
| 3.7254 | 12.31 | 160 | 3.2711 | 0.7197 | 0.4185 |
|
72 |
+
| 3.5303 | 13.08 | 170 | 3.0599 | 0.7197 | 0.4185 |
|
73 |
+
| 3.2531 | 13.85 | 180 | 2.8502 | 0.7197 | 0.4185 |
|
74 |
+
| 3.0184 | 14.62 | 190 | 2.6448 | 0.7197 | 0.4185 |
|
75 |
+
| 3.0006 | 15.38 | 200 | 2.4472 | 0.7197 | 0.4185 |
|
76 |
+
| 2.6674 | 16.15 | 210 | 2.2526 | 0.7197 | 0.4185 |
|
77 |
+
| 2.4455 | 16.92 | 220 | 2.0649 | 0.7197 | 0.4185 |
|
78 |
+
| 2.2702 | 17.69 | 230 | 1.8883 | 0.7197 | 0.4185 |
|
79 |
+
| 2.0536 | 18.46 | 240 | 1.7233 | 0.7197 | 0.4185 |
|
80 |
+
| 2.0643 | 19.23 | 250 | 1.5730 | 0.7197 | 0.4185 |
|
81 |
+
| 1.8006 | 20.0 | 260 | 1.4368 | 0.7197 | 0.4185 |
|
82 |
+
| 1.6975 | 20.77 | 270 | 1.3112 | 0.7197 | 0.4185 |
|
83 |
+
| 1.4407 | 21.54 | 280 | 1.2015 | 0.7197 | 0.4185 |
|
84 |
+
| 1.2971 | 22.31 | 290 | 1.1050 | 0.7197 | 0.4185 |
|
85 |
+
| 1.3202 | 23.08 | 300 | 1.0219 | 0.7197 | 0.4185 |
|
86 |
+
| 1.1292 | 23.85 | 310 | 0.9490 | 0.7197 | 0.4185 |
|
87 |
+
| 1.1055 | 24.62 | 320 | 0.8879 | 0.7197 | 0.4185 |
|
88 |
+
| 0.9817 | 25.38 | 330 | 0.8366 | 0.7197 | 0.4185 |
|
89 |
+
| 0.9296 | 26.15 | 340 | 0.7906 | 0.7197 | 0.4185 |
|
90 |
+
| 0.8306 | 26.92 | 350 | 0.7506 | 0.7197 | 0.4185 |
|
91 |
+
| 0.8303 | 27.69 | 360 | 0.7171 | 0.7197 | 0.4185 |
|
92 |
+
| 0.8421 | 28.46 | 370 | 0.6953 | 0.7197 | 0.4185 |
|
93 |
+
| 0.7964 | 29.23 | 380 | 0.6650 | 0.7197 | 0.4185 |
|
94 |
+
| 0.7528 | 30.0 | 390 | 0.6470 | 0.7197 | 0.4185 |
|
95 |
+
| 0.7305 | 30.77 | 400 | 0.6345 | 0.7197 | 0.4185 |
|
96 |
+
| 0.6702 | 31.54 | 410 | 0.6163 | 0.7385 | 0.4937 |
|
97 |
+
| 0.6416 | 32.31 | 420 | 0.6118 | 0.7547 | 0.5507 |
|
98 |
+
| 0.608 | 33.08 | 430 | 0.6086 | 0.7547 | 0.5507 |
|
99 |
+
| 0.6659 | 33.85 | 440 | 0.5981 | 0.7574 | 0.5949 |
|
100 |
+
| 0.5839 | 34.62 | 450 | 0.6068 | 0.7547 | 0.6570 |
|
101 |
+
| 0.6167 | 35.38 | 460 | 0.5894 | 0.7763 | 0.6479 |
|
102 |
+
| 0.5991 | 36.15 | 470 | 0.5947 | 0.7412 | 0.6531 |
|
103 |
+
| 0.5839 | 36.92 | 480 | 0.5938 | 0.7574 | 0.6771 |
|
104 |
+
| 0.5533 | 37.69 | 490 | 0.5922 | 0.7520 | 0.6399 |
|
105 |
+
| 0.4998 | 38.46 | 500 | 0.6203 | 0.7358 | 0.6625 |
|
106 |
+
| 0.5508 | 39.23 | 510 | 0.5865 | 0.7493 | 0.6278 |
|
107 |
+
| 0.5159 | 40.0 | 520 | 0.5963 | 0.7385 | 0.6670 |
|
108 |
+
| 0.5344 | 40.77 | 530 | 0.5946 | 0.7439 | 0.6420 |
|
109 |
+
| 0.5039 | 41.54 | 540 | 0.5979 | 0.7466 | 0.6526 |
|
110 |
+
| 0.5456 | 42.31 | 550 | 0.5999 | 0.7358 | 0.6707 |
|
111 |
+
| 0.4822 | 43.08 | 560 | 0.5845 | 0.7493 | 0.6437 |
|
112 |
+
| 0.4864 | 43.85 | 570 | 0.6035 | 0.7439 | 0.6779 |
|
113 |
+
| 0.4623 | 44.62 | 580 | 0.5961 | 0.7520 | 0.6519 |
|
114 |
+
| 0.475 | 45.38 | 590 | 0.6066 | 0.7439 | 0.6651 |
|
115 |
+
| 0.4887 | 46.15 | 600 | 0.6014 | 0.7466 | 0.6603 |
|
116 |
+
| 0.506 | 46.92 | 610 | 0.6012 | 0.7412 | 0.6604 |
|
117 |
+
| 0.5296 | 47.69 | 620 | 0.5986 | 0.7439 | 0.6503 |
|
118 |
+
| 0.5255 | 48.46 | 630 | 0.6003 | 0.7439 | 0.6503 |
|
119 |
+
| 0.4667 | 49.23 | 640 | 0.6038 | 0.7466 | 0.6553 |
|
120 |
+
| 0.4334 | 50.0 | 650 | 0.6061 | 0.7412 | 0.6531 |
|
121 |
+
|
122 |
+
|
123 |
+
### Framework versions
|
124 |
+
|
125 |
+
- Transformers 4.33.0
|
126 |
+
- Pytorch 2.0.0
|
127 |
+
- Datasets 2.1.0
|
128 |
+
- Tokenizers 0.13.3
|