callmesan commited on
Commit
f969973
1 Parent(s): 6bd4063

End of training

Browse files
Files changed (1) hide show
  1. README.md +128 -0
README.md ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: Harveenchadha/vakyansh-wav2vec2-tamil-tam-250
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: vakyansh-wav2vec2-tamil-tam-250-audio-abuse-feature
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # vakyansh-wav2vec2-tamil-tam-250-audio-abuse-feature
17
+
18
+ This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-tamil-tam-250](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-tamil-tam-250) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.6061
21
+ - Accuracy: 0.7412
22
+ - Macro F1-score: 0.6531
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 2e-05
42
+ - train_batch_size: 16
43
+ - eval_batch_size: 16
44
+ - seed: 42
45
+ - gradient_accumulation_steps: 4
46
+ - total_train_batch_size: 64
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - lr_scheduler_warmup_ratio: 0.1
50
+ - num_epochs: 50
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1-score |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------:|
56
+ | 6.7458 | 0.77 | 10 | 6.7472 | 0.0 | 0.0 |
57
+ | 6.7056 | 1.54 | 20 | 6.6488 | 0.0 | 0.0 |
58
+ | 6.6158 | 2.31 | 30 | 6.5180 | 0.6307 | 0.0917 |
59
+ | 6.4651 | 3.08 | 40 | 6.2887 | 0.7143 | 0.4167 |
60
+ | 6.2508 | 3.85 | 50 | 5.9094 | 0.7197 | 0.4185 |
61
+ | 5.8959 | 4.62 | 60 | 5.5362 | 0.7197 | 0.4185 |
62
+ | 5.6179 | 5.38 | 70 | 5.2347 | 0.7197 | 0.4185 |
63
+ | 5.3048 | 6.15 | 80 | 4.9823 | 0.7197 | 0.4185 |
64
+ | 5.0858 | 6.92 | 90 | 4.7555 | 0.7197 | 0.4185 |
65
+ | 4.9195 | 7.69 | 100 | 4.5424 | 0.7197 | 0.4185 |
66
+ | 4.6747 | 8.46 | 110 | 4.3265 | 0.7197 | 0.4185 |
67
+ | 4.5861 | 9.23 | 120 | 4.1193 | 0.7197 | 0.4185 |
68
+ | 4.3397 | 10.0 | 130 | 3.9070 | 0.7197 | 0.4185 |
69
+ | 4.0926 | 10.77 | 140 | 3.6954 | 0.7197 | 0.4185 |
70
+ | 3.8859 | 11.54 | 150 | 3.4822 | 0.7197 | 0.4185 |
71
+ | 3.7254 | 12.31 | 160 | 3.2711 | 0.7197 | 0.4185 |
72
+ | 3.5303 | 13.08 | 170 | 3.0599 | 0.7197 | 0.4185 |
73
+ | 3.2531 | 13.85 | 180 | 2.8502 | 0.7197 | 0.4185 |
74
+ | 3.0184 | 14.62 | 190 | 2.6448 | 0.7197 | 0.4185 |
75
+ | 3.0006 | 15.38 | 200 | 2.4472 | 0.7197 | 0.4185 |
76
+ | 2.6674 | 16.15 | 210 | 2.2526 | 0.7197 | 0.4185 |
77
+ | 2.4455 | 16.92 | 220 | 2.0649 | 0.7197 | 0.4185 |
78
+ | 2.2702 | 17.69 | 230 | 1.8883 | 0.7197 | 0.4185 |
79
+ | 2.0536 | 18.46 | 240 | 1.7233 | 0.7197 | 0.4185 |
80
+ | 2.0643 | 19.23 | 250 | 1.5730 | 0.7197 | 0.4185 |
81
+ | 1.8006 | 20.0 | 260 | 1.4368 | 0.7197 | 0.4185 |
82
+ | 1.6975 | 20.77 | 270 | 1.3112 | 0.7197 | 0.4185 |
83
+ | 1.4407 | 21.54 | 280 | 1.2015 | 0.7197 | 0.4185 |
84
+ | 1.2971 | 22.31 | 290 | 1.1050 | 0.7197 | 0.4185 |
85
+ | 1.3202 | 23.08 | 300 | 1.0219 | 0.7197 | 0.4185 |
86
+ | 1.1292 | 23.85 | 310 | 0.9490 | 0.7197 | 0.4185 |
87
+ | 1.1055 | 24.62 | 320 | 0.8879 | 0.7197 | 0.4185 |
88
+ | 0.9817 | 25.38 | 330 | 0.8366 | 0.7197 | 0.4185 |
89
+ | 0.9296 | 26.15 | 340 | 0.7906 | 0.7197 | 0.4185 |
90
+ | 0.8306 | 26.92 | 350 | 0.7506 | 0.7197 | 0.4185 |
91
+ | 0.8303 | 27.69 | 360 | 0.7171 | 0.7197 | 0.4185 |
92
+ | 0.8421 | 28.46 | 370 | 0.6953 | 0.7197 | 0.4185 |
93
+ | 0.7964 | 29.23 | 380 | 0.6650 | 0.7197 | 0.4185 |
94
+ | 0.7528 | 30.0 | 390 | 0.6470 | 0.7197 | 0.4185 |
95
+ | 0.7305 | 30.77 | 400 | 0.6345 | 0.7197 | 0.4185 |
96
+ | 0.6702 | 31.54 | 410 | 0.6163 | 0.7385 | 0.4937 |
97
+ | 0.6416 | 32.31 | 420 | 0.6118 | 0.7547 | 0.5507 |
98
+ | 0.608 | 33.08 | 430 | 0.6086 | 0.7547 | 0.5507 |
99
+ | 0.6659 | 33.85 | 440 | 0.5981 | 0.7574 | 0.5949 |
100
+ | 0.5839 | 34.62 | 450 | 0.6068 | 0.7547 | 0.6570 |
101
+ | 0.6167 | 35.38 | 460 | 0.5894 | 0.7763 | 0.6479 |
102
+ | 0.5991 | 36.15 | 470 | 0.5947 | 0.7412 | 0.6531 |
103
+ | 0.5839 | 36.92 | 480 | 0.5938 | 0.7574 | 0.6771 |
104
+ | 0.5533 | 37.69 | 490 | 0.5922 | 0.7520 | 0.6399 |
105
+ | 0.4998 | 38.46 | 500 | 0.6203 | 0.7358 | 0.6625 |
106
+ | 0.5508 | 39.23 | 510 | 0.5865 | 0.7493 | 0.6278 |
107
+ | 0.5159 | 40.0 | 520 | 0.5963 | 0.7385 | 0.6670 |
108
+ | 0.5344 | 40.77 | 530 | 0.5946 | 0.7439 | 0.6420 |
109
+ | 0.5039 | 41.54 | 540 | 0.5979 | 0.7466 | 0.6526 |
110
+ | 0.5456 | 42.31 | 550 | 0.5999 | 0.7358 | 0.6707 |
111
+ | 0.4822 | 43.08 | 560 | 0.5845 | 0.7493 | 0.6437 |
112
+ | 0.4864 | 43.85 | 570 | 0.6035 | 0.7439 | 0.6779 |
113
+ | 0.4623 | 44.62 | 580 | 0.5961 | 0.7520 | 0.6519 |
114
+ | 0.475 | 45.38 | 590 | 0.6066 | 0.7439 | 0.6651 |
115
+ | 0.4887 | 46.15 | 600 | 0.6014 | 0.7466 | 0.6603 |
116
+ | 0.506 | 46.92 | 610 | 0.6012 | 0.7412 | 0.6604 |
117
+ | 0.5296 | 47.69 | 620 | 0.5986 | 0.7439 | 0.6503 |
118
+ | 0.5255 | 48.46 | 630 | 0.6003 | 0.7439 | 0.6503 |
119
+ | 0.4667 | 49.23 | 640 | 0.6038 | 0.7466 | 0.6553 |
120
+ | 0.4334 | 50.0 | 650 | 0.6061 | 0.7412 | 0.6531 |
121
+
122
+
123
+ ### Framework versions
124
+
125
+ - Transformers 4.33.0
126
+ - Pytorch 2.0.0
127
+ - Datasets 2.1.0
128
+ - Tokenizers 0.13.3