File size: 5,333 Bytes
72bcd86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c691d0
 
 
 
81919af
6c691d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b50538b
6c691d0
 
 
4ecc585
6c691d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# /// script
# requires-python = ">=3.10"
# dependencies = [
#      "datasets",
#      "httpx",
#      "huggingface - hub",
#      "setuptools",
#      "transformers",
#      "torch",
#      "accelerate",
#      "trl",
#      "peft",
#      "wandb",
#      "torchvision",
#      "torchaudio"
# ]
# ///


"""## Import libraries"""

import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import SFTConfig, SFTTrainer, setup_chat_format
from peft import LoraConfig

"""# Load Dataset"""

dataset_name = "allenai/tulu-3-sft-personas-code"  # Example dataset

# Load dataset
dataset = load_dataset(dataset_name, split="train")
print(f"Dataset loaded: {dataset}")

# Let's look at a sample
print("\nSample data:")
print(dataset[0])

dataset = dataset.remove_columns("prompt")
dataset = dataset.train_test_split(test_size=0.2)

print(
    f"Train Samples: {len(dataset['train'])}\nTest Samples: {len(dataset['test'])}"
)

"""## Configuration

Set up the configuration parameters for the fine-tuning process.
"""

# Model configuration
model_name = "Qwen/Qwen3-30B-A3B"  # You can change this to any model you want to fine-tune

# # Other compatible Qwen3 models
# model_name = "Qwen/Qwen3-32B"
# model_name = "Qwen/Qwen3-14B"
# model_name = "Qwen/Qwen3-8B"
# model_name = "Qwen/Qwen3-4B"
# model_name = "Qwen/Qwen3-1.7B"
# model_name = "Qwen/Qwen3-0.6B"

# Training configuration
output_dir = "./tmp/sft-model"
num_train_epochs = 1
per_device_train_batch_size = 1
gradient_accumulation_steps = 1
learning_rate = 2e-4

"""## Load model and tokenizer"""

# Load model
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    use_cache=False,  # Disable KV cache during training
    device_map="auto",
)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)

# # Set up chat formatting (if the model doesn't have a chat template)
# if tokenizer.chat_template is None:
#     model, tokenizer = setup_chat_format(model, tokenizer, format="chatml")

# # Set padding token
# if tokenizer.pad_token is None:
#     tokenizer.pad_token = tokenizer.eos_token

"""## Configure PEFT (if enabled)"""

# Set up PEFT configuration if enabled
peft_config = LoraConfig(
    r=32,  # Rank
    lora_alpha=16,  # Alpha parameter for LoRA scaling
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules="all-linear",
)

"""## Configure SFT Trainer"""

# Training arguments
training_args = SFTConfig(
    output_dir=output_dir,
    num_train_epochs=num_train_epochs,
    per_device_train_batch_size=per_device_train_batch_size,
    gradient_accumulation_steps=gradient_accumulation_steps,
    learning_rate=learning_rate,
    gradient_checkpointing=True,
    logging_steps=25,
    save_strategy="epoch",
    optim="adamw_torch",
    lr_scheduler_type="cosine",
    warmup_ratio=0.1,
    max_length=1024,
    packing=True,  # Enable packing to increase training efficiency
    eos_token=tokenizer.eos_token,
    bf16=True,
    fp16=False,
    max_steps=1000,
    report_to="wandb",  # Disable reporting to avoid wandb prompts
)

"""## Initialize and run the SFT Trainer"""

# Create SFT Trainer
trainer = SFTTrainer(
    model=model,
    args=training_args,
    train_dataset=dataset["train"],
    eval_dataset=dataset["test"] if "test" in dataset else None,
    peft_config=peft_config,
    processing_class=tokenizer,
)

# Train the model
trainer.train()

"""## Save the fine-tuned model"""

# Save the model
trainer.save_model(output_dir)

"""## Test the fine-tuned model"""

from peft import PeftModel, PeftConfig

# Load the base model
base_model = AutoModelForCausalLM.from_pretrained(
    model_name, trust_remote_code=True, torch_dtype=torch.bfloat16
)

# Load the fine-tuned PEFT model
model = PeftModel.from_pretrained(base_model, output_dir)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Test the model with an example
prompt = """Write a function called is_palindrome that takes a single string as input and returns True if the string is a palindrome, and False otherwise.

Palindrome Definition:

A palindrome is a word, phrase, number, or other sequence of characters that reads the same forward and backward, ignoring spaces, punctuation, and capitalization.

Example:
```
is_palindrome("racecar")  # Returns True
is_palindrome("hello")  # Returns False
is_palindrome("A man, a plan, a canal: Panama")  # Returns True
```
"""

# Format the chat prompt using the tokenizer's chat template
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt},
]
formatted_prompt = tokenizer.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
print(f"Formatted prompt: {formatted_prompt}")

# Generate response
model.eval()
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
    outputs = model.generate(
        **inputs,
        max_new_tokens=500,
        temperature=0.7,
        top_p=0.9,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id,
    )
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("\nGenerated Response:")
print(response)

model.push_to_hub("burtenshaw/Qwen3-30B-A3B-python-code")