kanuni_model
This model is a fine-tuned version of nlpaueb/legal-bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4509
- Threatening Accuracy: 0.75
- Threatening F1: 0.75
- Threatening Precision: 1.0
- Threatening Recall: 0.6
- Conciliatory Accuracy: 0.8125
- Conciliatory F1: 0.8
- Conciliatory Precision: 0.6667
- Conciliatory Recall: 1.0
- Formal Accuracy: 1.0
- Formal F1: 1.0
- Formal Precision: 1.0
- Formal Recall: 1.0
- Persuasive Accuracy: 0.6875
- Persuasive F1: 0.7619
- Persuasive Precision: 0.7273
- Persuasive Recall: 0.8
- Overall Accuracy: 0.8125
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Threatening Accuracy | Threatening F1 | Threatening Precision | Threatening Recall | Conciliatory Accuracy | Conciliatory F1 | Conciliatory Precision | Conciliatory Recall | Formal Accuracy | Formal F1 | Formal Precision | Formal Recall | Persuasive Accuracy | Persuasive F1 | Persuasive Precision | Persuasive Recall | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6671 | 1.0 | 27 | 0.6366 | 0.4595 | 0.0909 | 1.0 | 0.0476 | 0.6216 | 0.2632 | 0.5 | 0.1786 | 0.7297 | 0.8438 | 0.7297 | 1.0 | 0.6892 | 0.7723 | 0.6842 | 0.8864 | 0.625 |
0.6124 | 2.0 | 54 | 0.5715 | 0.4865 | 0.1739 | 1.0 | 0.0952 | 0.6351 | 0.5424 | 0.5161 | 0.5714 | 0.8919 | 0.9298 | 0.8833 | 0.9815 | 0.7027 | 0.78 | 0.6964 | 0.8864 | 0.6791 |
0.531 | 3.0 | 81 | 0.5137 | 0.7297 | 0.7222 | 0.8667 | 0.6190 | 0.6892 | 0.6102 | 0.5806 | 0.6429 | 0.9730 | 0.9811 | 1.0 | 0.9630 | 0.6892 | 0.7294 | 0.7561 | 0.7045 | 0.7703 |
0.4845 | 4.0 | 108 | 0.4720 | 0.7568 | 0.7568 | 0.875 | 0.6667 | 0.7703 | 0.7385 | 0.6486 | 0.8571 | 0.9730 | 0.9811 | 1.0 | 0.9630 | 0.7027 | 0.7556 | 0.7391 | 0.7727 | 0.8007 |
0.4287 | 5.0 | 135 | 0.4524 | 0.7162 | 0.7273 | 0.8 | 0.6667 | 0.7432 | 0.6984 | 0.6286 | 0.7857 | 0.9730 | 0.9811 | 1.0 | 0.9630 | 0.6892 | 0.7294 | 0.7561 | 0.7045 | 0.7804 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 52
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for bulpara/kanuni_model
Base model
nlpaueb/legal-bert-base-uncased