File size: 10,912 Bytes
d48f2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a545a4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d48f2bf
 
 
 
d474da6
d48f2bf
 
 
d474da6
d48f2bf
 
 
 
 
 
 
 
 
 
 
d474da6
d48f2bf
d474da6
 
 
 
 
d48f2bf
 
 
 
 
 
 
 
d474da6
d48f2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
---
language:
  - pt
  - en
license: cc
tags:
  - text-generation-inference
  - transformers
  - mistral
  - gguf
  - brazil
  - brasil
  - portuguese
base_model: mistralai/Mistral-7B-Instruct-v0.2
pipeline_tag: text-generation
metrics:
  - name: assin2_rte f1_macro
    type: assin2_rte
    value: 90.13
  - name: assin2_rte acc
    type: assin2_rte
    value: 90.16
  - name: assin2_sts pearson
    type: assin2_sts
    value: 71.51
  - name: assin2_sts mse
    type: assin2_sts
    value: 68.03
  - name: bluex acc
    type: bluex
    value: 47.98
  - name: enem acc
    type: enem
    value: 58.43
  - name: faquad_nli f1_macro
    type: faquad_nli
    value: 64.24
  - name: faquad_nli acc
    type: faquad_nli
    value: 67.69
  - name: hatebr_offensive_binary f1_macro
    type: hatebr_offensive_binary
    value: 83.61
  - name: hatebr_offensive_binary acc
    type: hatebr_offensive_binary
    value: 83.71
  - name: oab_exams acc
    type: oab_exams
    value: 38.41
  - name: portuguese_hate_speech_binary f1_macro
    type: portuguese_hate_speech_binary
    value: 61.87
  - name: portuguese_hate_speech_binary acc
    type: portuguese_hate_speech_binary
    value: 63.22
---
# Cabra Mistral 7b v2
<img src="https://media.discordapp.net/attachments/1060891441724932096/1219303427000242316/blackpantera_cute_goat_with_red_M_in_the_background_brazil_flag_3b448f3a-d500-4f01-877f-2e469aba7dfc.png?ex=660acfce&is=65f85ace&hm=28ee401f092b558b11df54951270189641fe7d1173bfc4a5d633e53fb03c2d6d&=&format=webp&quality=lossless&width=350&height=350" width="400" height="400">

Esse modelo é um finetune do [Mistral 7b Instruct 0.2](https://huggingface.co/mistralai/mistral-7b-instruct-v0.2) com o dataset interno Cabra 10k. Esse modelo é optimizado para português e responde em portuguese nativamente. Ele apresenta melhoria em varios benchmarks brasileiros em comparação com o modelo base.   

**Exprimente o nosso demo aqui: [CabraChat](https://huggingface.co/spaces/nicolasdec/CabraChat).**

**Conheça os nossos outros modelos: [Cabra](https://huggingface.co/collections/botbot-ai/models-6604c2069ceef04f834ba99b).**

## Detalhes do Modelo

### Modelo: Mistral 7b Instruct 0.2

Mistral-7B-v0.1 é um modelo de transformador, com as seguintes escolhas arquitetônicas:

- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer

### dataset: Cabra 10k

Dataset interno para finetuning. Vamos lançar em breve. 

### Quantização / GGUF

Colocamos diversas versões (GGUF) quantanizadas no branch "quantanization". 

### Exemplo

```
<s> [INST] who is Elon Musk? [/INST]Elon Musk é um empreendedor, inventor e capitalista americano. Ele é o fundador, CEO e CTO da SpaceX, CEO da Neuralink e fundador do The Boring Company. Musk também é o proprietário do Twitter.</s>

```

### Paramentros de trainamento

```
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 3
```

### Framework

- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.14.6
- Tokenizers 0.15.2

## Uso
O modelo é destinado, por agora, a fins de pesquisa. As áreas e tarefas de pesquisa possíveis incluem:

- Pesquisa sobre modelos gerativos.
- Investigação e compreensão das limitações e viéses de modelos gerativos.

**Proibido para uso comercial. Somente Pesquisa.**

### Evals

| Tasks                       | Version | Filter               | n-shot | Metric   | Value  | Stderr  |
|-----------------------------|---------|----------------------|--------|----------|--------|---------|
| assin2_rte                  | 1.1     | all                  | 15     | f1_macro | 0.9013 | ± 0.0043 |
|                             |         | all                  | 15     | acc      | 0.9016 | ± 0.0043 |
| assin2_sts                  | 1.1     | all                  | 15     | pearson  | 0.7151 | ± 0.0074 |
|                             |         | all                  | 15     | mse      | 0.6803 | ± N/A    |
| bluex                       | 1.1     | all                  | 3      | acc      | 0.4798 | ± 0.0107 |
|                             |         | exam_id__USP_2019    | 3      | acc      | 0.375  | ± 0.044  |
|                             |         | exam_id__USP_2021    | 3      | acc      | 0.3462 | ± 0.0382 |
|                             |         | exam_id__USP_2020    | 3      | acc      | 0.4107 | ± 0.0379 |
|                             |         | exam_id__UNICAMP_2018| 3      | acc      | 0.4815 | ± 0.0392 |
|                             |         | exam_id__UNICAMP_2020| 3      | acc      | 0.4727 | ± 0.0389 |
|                             |         | exam_id__UNICAMP_2021_1| 3    | acc      | 0.413  | ± 0.0418 |
|                             |         | exam_id__UNICAMP_2019| 3      | acc      | 0.42   | ± 0.0404 |
|                             |         | exam_id__UNICAMP_2022| 3      | acc      | 0.5897 | ± 0.0456 |
|                             |         | exam_id__USP_2022    | 3      | acc      | 0.449  | ± 0.041  |
|                             |         | exam_id__USP_2024    | 3      | acc      | 0.6341 | ± 0.0434 |
|                             |         | exam_id__UNICAMP_2024| 3      | acc      | 0.6    | ± 0.0422 |
|                             |         | exam_id__USP_2023    | 3      | acc      | 0.5455 | ± 0.0433 |
|                             |         | exam_id__UNICAMP_2023| 3      | acc      | 0.5349 | ± 0.044  |
|                             |         | exam_id__USP_2018    | 3      | acc      | 0.4815 | ± 0.0393 |
|                             |         | exam_id__UNICAMP_2021_2| 3    | acc      | 0.5098 | ± 0.0403 |
| enem                        | 1.1     | all                  | 3      | acc      | 0.5843 | ± 0.0075 |
|                             |         | exam_id__2010        | 3      | acc      | 0.5726 | ± 0.0264 |
|                             |         | exam_id__2009        | 3      | acc      | 0.6    | ± 0.0264 |
|                             |         | exam_id__2014        | 3      | acc      | 0.633  | ± 0.0268 |
|                             |         | exam_id__2022        | 3      | acc      | 0.6165 | ± 0.0243 |
|                             |         | exam_id__2012        | 3      | acc      | 0.569  | ± 0.0265 |
|                             |         | exam_id__2013        | 3      | acc      | 0.5833 | ± 0.0274 |
|                             |         | exam_id__2016_2      | 3      | acc      | 0.5203 | ± 0.026  |
|                             |         | exam_id__2011        | 3      | acc      | 0.6325 | ± 0.0257 |
|                             |         | exam_id__2023        | 3      | acc      | 0.5778 | ± 0.0246 |
|                             |         | exam_id__2016        | 3      | acc      | 0.595  | ± 0.0258 |
|                             |         | exam_id__2017        | 3      | acc      | 0.5517 | ± 0.0267 |
|                             |         | exam_id__2015        | 3      | acc      | 0.563  | ± 0.0261 |
| faquad_nli                  | 1.1     | all                  | 15     | f1_macro | 0.6424 | ± 0.0138 |
|                             |         | all                  | 15     | acc      | 0.6769 | ± 0.013  |
| hatebr_offensive_binary     | 1       | all                  | 25     | f1_macro | 0.8361 | ± 0.007  |
|                             |         | all                  | 25     | acc      | 0.8371 | ± 0.007  |
| oab_exams                   | 1.5     | all                  | 3      | acc      | 0.3841 | ± 0.006  |
|                             |         | exam_id__2011-03     | 3      | acc      | 0.3636 | ± 0.0279 |
|                             |         | exam_id__2014-14     | 3      | acc      | 0.475  | ± 0.0323 |
|                             |         | exam_id__2016-21     | 3      | acc      | 0.4125 | ± 0.0318 |
|                             |         | exam_id__2012-06a    | 3      | acc      | 0.3875 | ± 0.0313 |
|                             |         | exam_id__2014-13     | 3      | acc      | 0.325  | ± 0.0303 |
|                             |         | exam_id__2015-16     | 3      | acc      | 0.425  | ± 0.032  |
|                             |         | exam_id__2010-02     | 3      | acc      | 0.4    | ± 0.0283 |
|                             |         | exam_id__2012-08     | 3      | acc      | 0.3875 | ± 0.0314 |
|                             |         | exam_id__2011-05     | 3      | acc      | 0.375  | ± 0.0312 |
|                             |         | exam_id__2017-22     | 3      | acc      | 0.4    | ± 0.0316 |
|                             |         | exam_id__2018-25     | 3      | acc      | 0.4125 | ± 0.0318 |
|                             |         | exam_id__2012-09     | 3      | acc      | 0.3636 | ± 0.0317 |
|                             |         | exam_id__2017-24     | 3      | acc      | 0.3375 | ± 0.0304 |
|                             |         | exam_id__2016-20a    | 3      | acc      | 0.3125 | ± 0.0299 |
|                             |         | exam_id__2012-06     | 3      | acc      | 0.425  | ± 0.0318 |
|                             |         | exam_id__2013-12     | 3      | acc      | 0.4375 | ± 0.0321 |
|                             |         | exam_id__2016-20     | 3      | acc      | 0.45   | ± 0.0322 |
|                             |         | exam_id__2013-11     | 3      | acc      | 0.4    | ± 0.0316 |
|                             |         | exam_id__2015-17     | 3      | acc      | 0.4231 | ± 0.0323 |
|                             |         | exam_id__2015-18     | 3      | acc      | 0.4    | ± 0.0316 |
|                             |         | exam_id__2017-23     | 3      | acc      | 0.35   | ± 0.0308 |
|                             |         | exam_id__2010-01     | 3      | acc      | 0.2471 | ± 0.0271 |
|                             |         | exam_id__2011-04     | 3      | acc      | 0.375  | ± 0.0313 |
|                             |         | exam_id__2016-19     | 3      | acc      | 0.4103 | ± 0.0321 |
|                             |         | exam_id__2013-10     | 3      | acc      | 0.3375 | ± 0.0305 |
|                             |         | exam_id__2012-07     | 3      | acc      | 0.3625 | ± 0.031  |
|                             |         | exam_id__2014-15     | 3      | acc      | 0.3846 | ± 0.0318 |
| portuguese_hate_speech_binary | 1    | all                  | 25     | f1_macro | 0.6187 | ± 0.0119 |
|                             |         | all                  | 25     | acc      | 0.6322 | ± 0.0117 |