File size: 4,971 Bytes
ddb547c
84b3e03
 
 
ddb547c
84b3e03
 
b496440
84b3e03
ddb547c
84b3e03
 
 
 
 
 
 
 
 
 
 
 
 
ba49116
 
84b3e03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b1e973
84b3e03
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
---
language:
  - id
  - ms
license: apache-2.0
tags:
  - g2p
  - text2text-generation
inference: false
---

# ID G2P LSTM

ID G2P LSTM is a grapheme-to-phoneme model based on the [LSTM](https://doi.org/10.1162/neco.1997.9.8.1735) architecture. This model was trained from scratch on a modified [Malay/Indonesian lexicon](https://huggingface.co/datasets/bookbot/id_word2phoneme).

This model was trained using the [Keras](https://keras.io/) framework. All training was done on Google Colaboratory. We adapted the [LSTM training script](https://keras.io/examples/nlp/lstm_seq2seq/) provided by the official Keras Code Example.

## Model

| Model         | #params | Arch. | Training/Validation data |
| ------------- | ------- | ----- | ------------------------ |
| `id-g2p-lstm` | 596K    | LSTM  | Malay/Indonesian Lexicon |

![](./model.png)

## Training Procedure

<details>
  <summary>Model Config</summary>

    latent_dim: 256
    num_encoder_tokens: 28
    num_decoder_tokens: 32
    max_encoder_seq_length: 24
    max_decoder_seq_length: 25

</details>

<details>
  <summary>Training Setting</summary>

    batch_size: 64
    optimizer: "rmsprop"
    loss: "categorical_crossentropy"
    learning_rate: 0.001
    epochs: 100

</details>

## How to Use

<details>
  <summary>Tokenizers</summary>

    g2id = {
        ' ': 27,
        '-': 0,
        'a': 1,
        'b': 2,
        'c': 3,
        'd': 4,
        'e': 5,
        'f': 6,
        'g': 7,
        'h': 8,
        'i': 9,
        'j': 10,
        'k': 11,
        'l': 12,
        'm': 13,
        'n': 14,
        'o': 15,
        'p': 16,
        'q': 17,
        'r': 18,
        's': 19,
        't': 20,
        'u': 21,
        'v': 22,
        'w': 23,
        'y': 24,
        'z': 25,
        '’': 26
    }

    p2id = {
        '\t': 0,
        '\n': 1,
        ' ': 31,
        '-': 2,
        'a': 3,
        'b': 4,
        'd': 5,
        'e': 6,
        'f': 7,
        'g': 8,
        'h': 9,
        'i': 10,
        'j': 11,
        'k': 12,
        'l': 13,
        'm': 14,
        'n': 15,
        'o': 16,
        'p': 17,
        'r': 18,
        's': 19,
        't': 20,
        'u': 21,
        'v': 22,
        'w': 23,
        'z': 24,
        'ŋ': 25,
        'ə': 26,
        'ɲ': 27,
        'ʃ': 28,
        'ʒ': 29,
        'ʔ': 30
    }

</details>

```py
import keras
import numpy as np
from huggingface_hub import from_pretrained_keras

latent_dim = 256
bos_token, eos_token, pad_token = "\t", "\n", " "
num_encoder_tokens, num_decoder_tokens = 28, 32
max_encoder_seq_length, max_decoder_seq_length = 24, 25

model = from_pretrained_keras("bookbot/id-g2p-lstm")

encoder_inputs = model.input[0]
encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output
encoder_states = [state_h_enc, state_c_enc]
encoder_model = keras.Model(encoder_inputs, encoder_states)

decoder_inputs = model.input[1]

decoder_state_input_h = keras.Input(shape=(latent_dim,), name="input_3")
decoder_state_input_c = keras.Input(shape=(latent_dim,), name="input_4")
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_lstm = model.layers[3]
decoder_outputs, state_h_dec, state_c_dec = decoder_lstm(
    decoder_inputs, initial_state=decoder_states_inputs
)
decoder_states = [state_h_dec, state_c_dec]
decoder_dense = model.layers[4]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = keras.Model(
    [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states
)

def inference(sequence):
    id2p = {v: k for k, v in p2id.items()}

    input_seq = np.zeros(
        (1, max_encoder_seq_length, num_encoder_tokens), dtype="float32"
    )

    for t, char in enumerate(sequence):
        input_seq[0, t, g2id[char]] = 1.0
    input_seq[0, t + 1 :, g2id[pad_token]] = 1.0

    states_value = encoder_model.predict(input_seq)

    target_seq = np.zeros((1, 1, num_decoder_tokens))
    target_seq[0, 0, p2id[bos_token]] = 1.0

    stop_condition = False
    decoded_sentence = ""
    while not stop_condition:
        output_tokens, h, c = decoder_model.predict([target_seq] + states_value)

        sampled_token_index = np.argmax(output_tokens[0, -1, :])
        sampled_char = id2p[sampled_token_index]
        decoded_sentence += sampled_char

        if sampled_char == eos_token or len(decoded_sentence) > max_decoder_seq_length:
            stop_condition = True

        target_seq = np.zeros((1, 1, num_decoder_tokens))
        target_seq[0, 0, sampled_token_index] = 1.0

        states_value = [h, c]
    return decoded_sentence.replace(eos_token, "")

inference("mengembangkannya")
```

## Authors

ID G2P LSTM was trained and evaluated by [Ananto Joyoadikusumo](https://anantoj.github.io/), [Steven Limcorn](https://stevenlimcorn.github.io/), [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory.

## Framework versions

- Keras 2.8.0
- TensorFlow 2.8.0