File size: 3,732 Bytes
846aefb
1432ed9
 
 
 
 
 
 
 
846aefb
 
1432ed9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
846aefb
 
1432ed9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
846aefb
1432ed9
846aefb
1432ed9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
---
language:
  - id
  - ms
license: apache-2.0
tags:
  - g2p
  - fill-mask
inference: false
---

# ID G2P BERT

ID G2P BERT is a phoneme de-masking model based on the [BERT](https://arxiv.org/abs/1810.04805) architecture. This model was trained from scratch on a modified [Malay/Indonesian lexicon](https://huggingface.co/datasets/bookbot/id_word2phoneme).

This model was trained using the [Keras](https://keras.io/) framework. All training was done on Google Colaboratory. We adapted the [BERT Masked Language Modeling training script](https://keras.io/examples/nlp/masked_language_modeling) provided by the official Keras Code Example.

## Model

| Model         | #params | Arch. | Training/Validation data |
| ------------- | ------- | ----- | ------------------------ |
| `id-g2p-bert` | 200K    | BERT  | Malay/Indonesian Lexicon |

![](./model.png)

## Training Procedure

<details>
  <summary>Model Config</summary>

    vocab_size: 32
    max_len: 32
    embed_dim: 128
    num_attention_head: 2
    feed_forward_dim: 128
    num_layers: 2

</details>

<details>
  <summary>Training Setting</summary>

    batch_size: 32
    optimizer: "adam"
    learning_rate: 0.001
    epochs: 100

</details>

## How to Use

<details>
  <summary>Tokenizers</summary>

    id2token = {
        0: '',
        1: '[UNK]',
        2: 'a',
        3: 'n',
        4: 'ə',
        5: 'i',
        6: 'r',
        7: 'k',
        8: 'm',
        9: 't',
        10: 'u',
        11: 'g',
        12: 's',
        13: 'b',
        14: 'p',
        15: 'l',
        16: 'd',
        17: 'o',
        18: 'e',
        19: 'h',
        20: 'c',
        21: 'y',
        22: 'j',
        23: 'w',
        24: 'f',
        25: 'v',
        26: '-',
        27: 'z',
        28: "'",
        29: 'q',
        30: '[mask]'
    }

    token2id = {
        '': 0,
        "'": 28,
        '-': 26,
        '[UNK]': 1,
        '[mask]': 30,
        'a': 2,
        'b': 13,
        'c': 20,
        'd': 16,
        'e': 18,
        'f': 24,
        'g': 11,
        'h': 19,
        'i': 5,
        'j': 22,
        'k': 7,
        'l': 15,
        'm': 8,
        'n': 3,
        'o': 17,
        'p': 14,
        'q': 29,
        'r': 6,
        's': 12,
        't': 9,
        'u': 10,
        'v': 25,
        'w': 23,
        'y': 21,
        'z': 27,
        'ə': 4
    }

</details>

```py
import keras
import tensorflow as tf
import numpy as np

mlm_model = keras.models.load_model(
    "bert_mlm.h5", custom_objects={"MaskedLanguageModel": MaskedLanguageModel}
)

MAX_LEN = 32

def inference(sequence):
    sequence = " ".join([c if c != "e" else "[mask]" for c in sequence])
    tokens = [token2id[c] for c in sequence.split()]
    pad = [token2id[""] for _ in range(MAX_LEN - len(tokens))]

    tokens = tokens + pad
    input_ids = tf.convert_to_tensor(np.array([tokens]))
    prediction = mlm_model.predict(input_ids)

    # find masked idx token
    masked_index = np.where(input_ids == mask_token_id)
    masked_index = masked_index[1]

    # get prediction at those masked index only
    mask_prediction = prediction[0][masked_index]
    predicted_ids = np.argmax(mask_prediction, axis=1)

    # replace mask with predicted token
    for i, idx in enumerate(masked_index):
        tokens[idx] = predicted_ids[i]

    return "".join([id2token[t] for t in tokens if t != 0])

inference("mengembangkannya")
```

## Authors

ID G2P BERT was trained and evaluated by [Ananto Joyoadikusumo](https://anantoj.github.io/), [Steven Limcorn](https://stevenlimcorn.github.io/), [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory.

## Framework versions

- Keras 2.8.0
- TensorFlow 2.8.0