Edit model card

Fine-tuned XLSR-53 large model for speech recognition in French

Fine-tuned facebook/wav2vec2-large-xlsr-53 on French using the train and validation splits of Common Voice 6.1. When using this model, make sure that your speech input is sampled at 16kHz.

This model has been fine-tuned thanks to the GPU credits generously given by the OVHcloud :)

The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint

Usage

The model can be used directly (without a language model) as follows...

Using the HuggingSound library:

from huggingsound import SpeechRecognitionModel

model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-french")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]

transcriptions = model.transcribe(audio_paths)

Writing your own inference script:

import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "fr"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-french"
SAMPLES = 10

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)

for i, predicted_sentence in enumerate(predicted_sentences):
    print("-" * 100)
    print("Reference:", test_dataset[i]["sentence"])
    print("Prediction:", predicted_sentence)
Reference Prediction
"CE DERNIER A ÉVOLUÉ TOUT AU LONG DE L'HISTOIRE ROMAINE." CE DERNIER ÉVOLUÉ TOUT AU LONG DE L'HISTOIRE ROMAINE
CE SITE CONTIENT QUATRE TOMBEAUX DE LA DYNASTIE ACHÉMÉNIDE ET SEPT DES SASSANIDES. CE SITE CONTIENT QUATRE TOMBEAUX DE LA DYNASTIE ASHEMÉNID ET SEPT DES SASANDNIDES
"J'AI DIT QUE LES ACTEURS DE BOIS AVAIENT, SELON MOI, BEAUCOUP D'AVANTAGES SUR LES AUTRES." JAI DIT QUE LES ACTEURS DE BOIS AVAIENT SELON MOI BEAUCOUP DAVANTAGES SUR LES AUTRES
LES PAYS-BAS ONT REMPORTÉ TOUTES LES ÉDITIONS. LE PAYS-BAS ON REMPORTÉ TOUTES LES ÉDITIONS
IL Y A MAINTENANT UNE GARE ROUTIÈRE. IL AMNARDIGAD LE TIRAN
HUIT HUIT
DANS L’ATTENTE DU LENDEMAIN, ILS NE POUVAIENT SE DÉFENDRE D’UNE VIVE ÉMOTION DANS L'ATTENTE DU LENDEMAIN IL NE POUVAIT SE DÉFENDRE DUNE VIVE ÉMOTION
LA PREMIÈRE SAISON EST COMPOSÉE DE DOUZE ÉPISODES. LA PREMIÈRE SAISON EST COMPOSÉE DE DOUZE ÉPISODES
ELLE SE TROUVE ÉGALEMENT DANS LES ÎLES BRITANNIQUES. ELLE SE TROUVE ÉGALEMENT DANS LES ÎLES BRITANNIQUES
ZÉRO ZEGO

Evaluation

  1. To evaluate on mozilla-foundation/common_voice_6_0 with split test
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-french --dataset mozilla-foundation/common_voice_6_0 --config fr --split test
  1. To evaluate on speech-recognition-community-v2/dev_data
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-french --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0

Citation

If you want to cite this model you can use this:

@misc{grosman2021xlsr53-large-french,
  title={Fine-tuned {XLSR}-53 large model for speech recognition in {F}rench},
  author={Grosman, Jonatas},
  howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-french}},
  year={2021}
}
Downloads last month
0
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train bonvent/test2

Evaluation results