Edit model card

Wav2Vec2-Large-Ru-Golos

The Wav2Vec2 model is based on facebook/wav2vec2-large-xlsr-53, fine-tuned in Russian using Sberdevices Golos with audio augmentations like as pitch shift, acceleration/deceleration of sound, reverberation etc.

When using this model, make sure that your speech input is sampled at 16kHz.

Usage

To transcribe audio files the model can be used as a standalone acoustic model as follows:

from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from datasets import load_dataset
import torch
 
# load model and tokenizer
processor = Wav2Vec2Processor.from_pretrained("bond005/wav2vec2-large-ru-golos")
model = Wav2Vec2ForCTC.from_pretrained("bond005/wav2vec2-large-ru-golos")
     
# load the test part of Golos dataset and read first soundfile
ds = load_dataset("bond005/sberdevices_golos_10h_crowd", split="test")
 
# tokenize
processed = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest")  # Batch size 1
 
# retrieve logits
logits = model(processed.input_values, attention_mask=processed.attention_mask).logits
 
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
print(transcription)

Evaluation

This code snippet shows how to evaluate bond005/wav2vec2-large-ru-golos on Golos dataset's "crowd" and "farfield" test data.

from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torch
from jiwer import wer, cer  # we need word error rate (WER) and character error rate (CER)

# load the test part of Golos Crowd and remove samples with empty "true" transcriptions
golos_crowd_test = load_dataset("bond005/sberdevices_golos_10h_crowd", split="test")
golos_crowd_test = golos_crowd_test.filter(
    lambda it1: (it1["transcription"] is not None) and (len(it1["transcription"].strip()) > 0)
)

# load the test part of Golos Farfield and remove sampels with empty "true" transcriptions
golos_farfield_test = load_dataset("bond005/sberdevices_golos_100h_farfield", split="test")
golos_farfield_test = golos_farfield_test.filter(
    lambda it2: (it2["transcription"] is not None) and (len(it2["transcription"].strip()) > 0)
)

# load model and tokenizer
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")

# recognize one sound
def map_to_pred(batch):
    # tokenize and vectorize
    processed = processor(
        batch["audio"]["array"], sampling_rate=batch["audio"]["sampling_rate"],
        return_tensors="pt", padding="longest"
    )
    input_values = processed.input_values.to("cuda")
    attention_mask = processed.attention_mask.to("cuda")

    # recognize
    with torch.no_grad():
        logits = model(input_values, attention_mask=attention_mask).logits
    predicted_ids = torch.argmax(logits, dim=-1)

    # decode
    transcription = processor.batch_decode(predicted_ids)
    batch["text"] = transcription[0]
    return batch

# calculate WER and CER on the crowd domain
crowd_result = golos_crowd_test.map(map_to_pred, remove_columns=["audio"])
crowd_wer = wer(crowd_result["transcription"], crowd_result["text"])
crowd_cer = cer(crowd_result["transcription"], crowd_result["text"])
print("Word error rate on the Crowd domain:", crowd_wer)
print("Character error rate on the Crowd domain:", crowd_cer)

# calculate WER and CER on the farfield domain
farfield_result = golos_farfield_test.map(map_to_pred, remove_columns=["audio"])
farfield_wer = wer(farfield_result["transcription"], farfield_result["text"])
farfield_cer = cer(farfield_result["transcription"], farfield_result["text"])
print("Word error rate on the Farfield domain:", farfield_wer)
print("Character error rate on the Farfield domain:", farfield_cer)

Result (WER, %):

"crowd" "farfield"
10.144 20.353

Result (CER, %):

"crowd" "farfield"
2.168 6.030

You can see the evaluation script on other datasets, including Russian Librispeech and SOVA RuDevices, on my Kaggle web-page https://www.kaggle.com/code/bond005/wav2vec2-ru-eval

Citation

If you want to cite this model you can use this:

@misc{bondarenko2022wav2vec2-large-ru-golos,
  title={XLSR Wav2Vec2 Russian by Ivan Bondarenko},
  author={Bondarenko, Ivan},
  publisher={Hugging Face},
  journal={Hugging Face Hub},
  howpublished={\url{https://huggingface.co/bond005/wav2vec2-large-ru-golos}},
  year={2022}
}
Downloads last month
1,459
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train bond005/wav2vec2-large-ru-golos

Space using bond005/wav2vec2-large-ru-golos 1

Evaluation results