File size: 8,567 Bytes
84c2d70 d5950ce 84c2d70 d5950ce 84c2d70 d5950ce 84c2d70 d5950ce 84c2d70 d5950ce 84c2d70 d5950ce 84c2d70 d5950ce 84c2d70 d5950ce 84c2d70 d5950ce 84c2d70 d5950ce 84c2d70 d5950ce 84c2d70 d5950ce 84c2d70 d5950ce 84c2d70 d5950ce 84c2d70 d5950ce 84c2d70 d5950ce 84c2d70 d5950ce 84c2d70 d5950ce 84c2d70 d5950ce 84c2d70 d5950ce 84c2d70 f3b39d6 84c2d70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
---
language: fr
license: apache-2.0
library_name: transformers
tags:
- automatic-speech-recognition
- hf-asr-leaderboard
- whisper-event
datasets:
- mozilla-foundation/common_voice_11_0
- facebook/multilingual_librispeech
- facebook/voxpopuli
- google/fleurs
- gigant/african_accented_french
metrics:
- wer
base_model: openai/whisper-large-v2
model-index:
- name: Fine-tuned whisper-large-v2 model for ASR in French
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: fr
split: test
args: fr
metrics:
- type: wer
value: 8.15
name: WER (Greedy)
- type: wer
value: 7.83
name: WER (Beam 5)
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Multilingual LibriSpeech (MLS)
type: facebook/multilingual_librispeech
config: french
split: test
args: french
metrics:
- type: wer
value: 4.2
name: WER (Greedy)
- type: wer
value: 4.03
name: WER (Beam 5)
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: VoxPopuli
type: facebook/voxpopuli
config: fr
split: test
args: fr
metrics:
- type: wer
value: 9.1
name: WER (Greedy)
- type: wer
value: 8.66
name: WER (Beam 5)
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Fleurs
type: google/fleurs
config: fr_fr
split: test
args: fr_fr
metrics:
- type: wer
value: 5.22
name: WER (Greedy)
- type: wer
value: 4.98
name: WER (Beam 5)
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: African Accented French
type: gigant/african_accented_french
config: fr
split: test
args: fr
metrics:
- type: wer
value: 4.58
name: WER (Greedy)
- type: wer
value: 4.31
name: WER (Beam 5)
---
<style>
img {
display: inline;
}
</style>
![Model architecture](https://img.shields.io/badge/Model_Architecture-seq2seq-lightgrey)
![Model size](https://img.shields.io/badge/Params-1550M-lightgrey)
![Language](https://img.shields.io/badge/Language-French-lightgrey)
# Fine-tuned whisper-large-v2 model for ASR in French
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2), trained on a composite dataset comprising of over 2200 hours of French speech audio, using the train and the validation splits of [Common Voice 11.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0), [Multilingual LibriSpeech](https://huggingface.co/datasets/facebook/multilingual_librispeech), [Voxpopuli](https://github.com/facebookresearch/voxpopuli), [Fleurs](https://huggingface.co/datasets/google/fleurs), [Multilingual TEDx](http://www.openslr.org/100), [MediaSpeech](https://www.openslr.org/108), and [African Accented French](https://huggingface.co/datasets/gigant/african_accented_french). When using the model make sure that your speech input is sampled at 16Khz. **This model doesn't predict casing or punctuation.**
## Performance
*Below are the WERs of the pre-trained models on the [Common Voice 9.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0), [Multilingual LibriSpeech](https://huggingface.co/datasets/facebook/multilingual_librispeech), [Voxpopuli](https://github.com/facebookresearch/voxpopuli) and [Fleurs](https://huggingface.co/datasets/google/fleurs). These results are reported in the original [paper](https://cdn.openai.com/papers/whisper.pdf).*
| Model | Common Voice 9.0 | MLS | VoxPopuli | Fleurs |
| --- | :---: | :---: | :---: | :---: |
| [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 22.7 | 16.2 | 15.7 | 15.0 |
| [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 16.0 | 8.9 | 12.2 | 8.7 |
| [openai/whisper-large](https://huggingface.co/openai/whisper-large) | 14.7 | 8.9 | **11.0** | **7.7** |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | **13.9** | **7.3** | 11.4 | 8.3 |
*Below are the WERs of the fine-tuned models on the [Common Voice 11.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0), [Multilingual LibriSpeech](https://huggingface.co/datasets/facebook/multilingual_librispeech), [Voxpopuli](https://github.com/facebookresearch/voxpopuli), and [Fleurs](https://huggingface.co/datasets/google/fleurs). Note that these evaluation datasets have been filtered and preprocessed to only contain French alphabet characters and are removed of punctuation outside of apostrophe. The results in the table are reported as `WER (greedy search) / WER (beam search with beam width 5)`.*
| Model | Common Voice 11.0 | MLS | VoxPopuli | Fleurs |
| --- | :---: | :---: | :---: | :---: |
| [bofenghuang/whisper-small-cv11-french](https://huggingface.co/bofenghuang/whisper-small-cv11-french) | 11.76 / 10.99 | 9.65 / 8.91 | 14.45 / 13.66 | 10.76 / 9.83 |
| [bofenghuang/whisper-medium-cv11-french](https://huggingface.co/bofenghuang/whisper-medium-cv11-french) | 9.03 / 8.54 | 6.34 / 5.86 | 11.64 / 11.35 | 7.13 / 6.85 |
| [bofenghuang/whisper-medium-french](https://huggingface.co/bofenghuang/whisper-medium-french) | 9.03 / 8.73 | 4.60 / 4.44 | 9.53 / 9.46 | 6.33 / 5.94 |
| [bofenghuang/whisper-large-v2-cv11-french](https://huggingface.co/bofenghuang/whisper-large-v2-cv11-french) | **8.05** / **7.67** | 5.56 / 5.28 | 11.50 / 10.69 | 5.42 / 5.05 |
| [bofenghuang/whisper-large-v2-french](https://huggingface.co/bofenghuang/whisper-large-v2-french) | 8.15 / 7.83 | **4.20** / **4.03** | **9.10** / **8.66** | **5.22** / **4.98** |
## Usage
Inference with 🤗 Pipeline
```python
import torch
from datasets import load_dataset
from transformers import pipeline
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load pipeline
pipe = pipeline("automatic-speech-recognition", model="bofenghuang/whisper-large-v2-french", device=device)
# NB: set forced_decoder_ids for generation utils
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="fr", task="transcribe")
# Load data
ds_mcv_test = load_dataset("mozilla-foundation/common_voice_11_0", "fr", split="test", streaming=True)
test_segment = next(iter(ds_mcv_test))
waveform = test_segment["audio"]
# Run
generated_sentences = pipe(waveform, max_new_tokens=225)["text"] # greedy
# generated_sentences = pipe(waveform, max_new_tokens=225, generate_kwargs={"num_beams": 5})["text"] # beam search
# Normalise predicted sentences if necessary
```
Inference with 🤗 low-level APIs
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load model
model = AutoModelForSpeechSeq2Seq.from_pretrained("bofenghuang/whisper-large-v2-french").to(device)
processor = AutoProcessor.from_pretrained("bofenghuang/whisper-large-v2-french", language="french", task="transcribe")
# NB: set forced_decoder_ids for generation utils
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="fr", task="transcribe")
# 16_000
model_sample_rate = processor.feature_extractor.sampling_rate
# Load data
ds_mcv_test = load_dataset("mozilla-foundation/common_voice_11_0", "fr", split="test", streaming=True)
test_segment = next(iter(ds_mcv_test))
waveform = torch.from_numpy(test_segment["audio"]["array"])
sample_rate = test_segment["audio"]["sampling_rate"]
# Resample
if sample_rate != model_sample_rate:
resampler = torchaudio.transforms.Resample(sample_rate, model_sample_rate)
waveform = resampler(waveform)
# Get feat
inputs = processor(waveform, sampling_rate=model_sample_rate, return_tensors="pt")
input_features = inputs.input_features
input_features = input_features.to(device)
# Generate
generated_ids = model.generate(inputs=input_features, max_new_tokens=225) # greedy
# generated_ids = model.generate(inputs=input_features, max_new_tokens=225, num_beams=5) # beam search
# Detokenize
generated_sentences = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Normalise predicted sentences if necessary
``` |