Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)
import numpy as np
import torch
import torch.nn as nn
from torchvision import datasets
from torchvision import transforms
from torch.utils.data.sampler import SubsetRandomSampler
from tqdm import tqdm
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
cuda
def data_loader(data_dir,
                batch_size,
                random_seed=42,
                valid_size=0.1,
                shuffle=True,
                test=False):

    normalize = transforms.Normalize(
        mean=[0.4914, 0.4822, 0.4465],
        std=[0.2023, 0.1994, 0.2010],
    )

    transform = transforms.Compose([
            transforms.Resize((224,224)),
            transforms.ToTensor(),
            normalize,
    ])

    if test:
        dataset = datasets.CIFAR10(
          root=data_dir, train=False,
          download=True, transform=transform,
        )

        data_loader = torch.utils.data.DataLoader(
            dataset, batch_size=batch_size, shuffle=shuffle
        )

        return data_loader

    train_dataset = datasets.CIFAR10(
        root=data_dir, train=True,
        download=True, transform=transform,
    )

    valid_dataset = datasets.CIFAR10(
        root=data_dir, train=True,
        download=True, transform=transform,
    )

    num_train = len(train_dataset)
    indices = list(range(num_train))
    split = int(np.floor(valid_size * num_train))

    if shuffle:
        np.random.seed(42)
        np.random.shuffle(indices)

    train_idx, valid_idx = indices[split:], indices[:split]
    train_sampler = SubsetRandomSampler(train_idx)
    valid_sampler = SubsetRandomSampler(valid_idx)

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=batch_size, sampler=train_sampler)

    valid_loader = torch.utils.data.DataLoader(
        valid_dataset, batch_size=batch_size, sampler=valid_sampler)

    return (train_loader, valid_loader)


train_loader, valid_loader = data_loader(data_dir='./data',
                                         batch_size=64)

test_loader = data_loader(data_dir='./data',
                              batch_size=64,
                              test=True)
Files already downloaded and verified
Files already downloaded and verified
Files already downloaded and verified
class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride = 1, downsample = None):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Sequential(
                        nn.Conv2d(in_channels, out_channels, kernel_size = 3, stride = stride, padding = 1),
                        nn.BatchNorm2d(out_channels),
                        nn.ReLU())
        self.conv2 = nn.Sequential(
                        nn.Conv2d(out_channels, out_channels, kernel_size = 3, stride = 1, padding = 1),
                        nn.BatchNorm2d(out_channels))
        self.downsample = downsample
        self.relu = nn.ReLU()
        self.out_channels = out_channels

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.conv2(out)
        if self.downsample:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out

class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes = 10):
        super(ResNet, self).__init__()
        self.inplanes = 64
        self.conv1 = nn.Sequential(
                        nn.Conv2d(3, 64, kernel_size = 7, stride = 2, padding = 3),
                        nn.BatchNorm2d(64),
                        nn.ReLU())
        self.maxpool = nn.MaxPool2d(kernel_size = 3, stride = 2, padding = 1)
        self.layer0 = self._make_layer(block, 64, layers[0], stride = 1)
        self.layer1 = self._make_layer(block, 128, layers[1], stride = 2)
        self.layer2 = self._make_layer(block, 256, layers[2], stride = 2)
        self.layer3 = self._make_layer(block, 512, layers[3], stride = 2)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(512, num_classes)

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes, kernel_size=1, stride=stride),
                nn.BatchNorm2d(planes),
            )
        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)


    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool(x)
        x = self.layer0(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x
num_classes = 10
num_epochs = 5
learning_rate = 0.01

model = ResNet(ResidualBlock, [2, 2, 2, 2]).to(device)

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, weight_decay = 0.001, momentum = 0.9)

total_step = len(train_loader)
import gc
total_step = len(train_loader)
from tqdm import tqdm
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(tqdm(train_loader)):
        # Move tensors to the configured device
        images = images.to(device)
        labels = labels.to(device)

        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)

        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    print ('Epoch [{}/{}], Loss: {:.4f}'
                   .format(epoch+1, num_epochs, loss.item()))

    # Validation
    with torch.no_grad():
        correct = 0
        total = 0
        for images, labels in valid_loader:
            images = images.to(device)
            labels = labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
            del images, labels, outputs

        print('Accuracy of the network on the {} validation images: {} %'.format(5000, 100 * correct / total))
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 176/176 [01:15<00:00,  2.35it/s]


Epoch [1/10], Loss: 1.2169
Accuracy of the network on the 5000 validation images: 58.28 %


100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 176/176 [01:16<00:00,  2.29it/s]


Epoch [2/10], Loss: 0.8962
Accuracy of the network on the 5000 validation images: 70.36 %


100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 176/176 [01:16<00:00,  2.30it/s]


Epoch [3/10], Loss: 0.6691
Accuracy of the network on the 5000 validation images: 75.86 %


100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 176/176 [01:16<00:00,  2.29it/s]


Epoch [4/10], Loss: 0.6426
Accuracy of the network on the 5000 validation images: 79.24 %


100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 176/176 [01:16<00:00,  2.29it/s]


Epoch [5/10], Loss: 0.2891
Accuracy of the network on the 5000 validation images: 80.4 %


100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 176/176 [01:16<00:00,  2.29it/s]


Epoch [6/10], Loss: 0.4245
Accuracy of the network on the 5000 validation images: 81.24 %


100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 176/176 [01:16<00:00,  2.29it/s]


Epoch [7/10], Loss: 0.2183
Accuracy of the network on the 5000 validation images: 81.44 %


100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 176/176 [01:16<00:00,  2.29it/s]


Epoch [8/10], Loss: 0.1172
Accuracy of the network on the 5000 validation images: 81.06 %


100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 176/176 [01:16<00:00,  2.30it/s]


Epoch [9/10], Loss: 0.1069
Accuracy of the network on the 5000 validation images: 82.14 %


100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 176/176 [01:17<00:00,  2.29it/s]


Epoch [10/10], Loss: 0.0555
Accuracy of the network on the 5000 validation images: 83.12 %
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
        del images, labels, outputs

    print('Accuracy of the network on the {} test images: {} %'.format(10000, 100 * correct / total))
model = torch.hub.load("pytorch/vision", "resnet152", weights="IMAGENET1K_V2")
model.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
num_features = model.fc.in_features
model.fc = nn.Linear(num_features, num_classes)
model = model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
Using cache found in /root/.cache/torch/hub/pytorch_vision_main
def train(model, trainloader, criterion, optimizer, device):
    train_loss = 0.0
    train_total = 0
    train_correct = 0

    # Switch to train mode
    model.train()

    for inputs, labels in trainloader:
        inputs, labels = inputs.to(device), labels.to(device)

        # Zero the parameter gradients
        optimizer.zero_grad()

        # Forward pass
        outputs = model(inputs)
        loss = criterion(outputs, labels)

        # Backward pass and optimize
        loss.backward()
        optimizer.step()

        # Update training loss
        train_loss += loss.item() * inputs.size(0)

        # Compute training accuracy
        _, predicted = torch.max(outputs, 1)
        train_total += labels.size(0)
        train_correct += (predicted == labels).sum().item()
    train_loss = train_loss / len(trainloader.dataset)
    train_accuracy = 100.0 * train_correct / train_total

    return model, train_loss, train_accuracy
def test(model, testloader, criterion, device):
    test_loss = 0.0
    test_total = 0
    test_correct = 0

    # Switch to evaluation mode
    model.eval()

    with torch.no_grad():
        for inputs, labels in testloader:
            inputs, labels = inputs.to(device), labels.to(device)

            # Forward pass
            outputs = model(inputs)
            loss = criterion(outputs, labels)

            # Update test loss
            test_loss += loss.item() * inputs.size(0)

            # Compute test accuracy
            _, predicted = torch.max(outputs, 1)
            test_total += labels.size(0)
            test_correct += (predicted == labels).sum().item()

    # Compute average test loss and accuracy
    test_loss = test_loss / len(testloader.dataset)
    test_accuracy = 100.0 * test_correct / test_total

    return test_loss, test_accuracy
def train_epochs(model, trainloader, testloader, criterion, optimizer, device, num_epochs, save_interval=5):
    train_losses = []
    train_accuracies = []
    test_losses = []
    test_accuracies = []

    for epoch in range(num_epochs):
        print(f'Epoch {epoch+1}/{num_epochs}')
        model, train_loss, train_accuracy = train(model, trainloader, criterion, optimizer, device)
        test_loss, test_accuracy = test(model, testloader, criterion, device)

        train_losses.append(train_loss)
        train_accuracies.append(train_accuracy)
        test_losses.append(test_loss)
        test_accuracies.append(test_accuracy)

        print(f'Train Loss: {train_loss:.4f} - Train Accuracy: {train_accuracy:.2f}%')
        print(f'Test Loss: {test_loss:.4f} - Test Accuracy: {test_accuracy:.2f}%')
        print()

    return model, train_losses, train_accuracies, test_losses, test_accuracies
trainset, trainloader, testset, testloader, classes = load_dataset()

if train_model:
  num_epochs = 60
  save_interval = 5
  model, train_losses, train_accuracies, test_losses, test_accuracies = train_epochs(
  model, trainloader, testloader, criterion, optimizer, device,
  num_epochs, save_interval)
else:
  model.load_state_dict(torch.load('resnet50_cifar10_final_model_epochs_50.pth'))
  checkpoint = torch.load("resnet50_cifar10_variables.pth")
  epoch = checkpoint['epoch']
  train_losses = checkpoint['train_losses']
  train_accuracies = checkpoint['train_accuracies']
  test_losses = checkpoint['test_losses']
  test_accuracies = checkpoint['test_accuracies']
  classes = checkpoint['classes']
  model.to(device)
  model.eval()

Epoch 1/10
----------


100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 704/704 [03:26<00:00,  3.41it/s]


Train Loss: 1.9308 Acc: 0.4630


100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 79/79 [00:22<00:00,  3.52it/s]


Val Loss: 0.1944 Acc: 0.0665

Epoch 2/10
----------


 24%|β–ˆβ–ˆβ–Ž       | 166/704 [00:49<02:40,  3.35it/s]



---------------------------------------------------------------------------

KeyboardInterrupt                         Traceback (most recent call last)

<ipython-input-11-483fc1f8b5af> in <cell line: 51>()
     49 num_epochs = 10
     50 dataloaders = {'train': train_loader, 'val': valid_loader}
---> 51 trained_model = train_model(combined_model, dataloaders, criterion, optimizer, scheduler, num_epochs=num_epochs, device=device)


<ipython-input-11-483fc1f8b5af> in train_model(model, dataloaders, criterion, optimizer, scheduler, num_epochs, device)
     32                     optimizer.step()
     33 
---> 34                 running_loss += loss.item() * inputs.size(0)
     35                 running_corrects += torch.sum(preds == labels.data)
     36                 del inputs, labels, outputs


KeyboardInterrupt: 

Downloads last month
0
Unable to determine this model's library. Check the docs .