File size: 14,091 Bytes
ddb7519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
'''
 * Copyright (c) 2022, salesforce.com, inc.
 * All rights reserved.
 * SPDX-License-Identifier: BSD-3-Clause
 * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
 * By Junnan Li
'''
import argparse
import os
import ruamel_yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.utils.data import DataLoader

from models.blip_retrieval import blip_retrieval
import utils
from utils import cosine_lr_schedule
from data import create_dataset, create_sampler, create_loader


def train(model, data_loader, optimizer, epoch, device, config):
    # train
    model.train()  
    
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
    metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
    header = 'Train Epoch: [{}]'.format(epoch)
    print_freq = 50

    for i,(image, caption, idx) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
        image = image.to(device,non_blocking=True)   
        idx = idx.to(device,non_blocking=True)   
       
        if epoch>0:
            alpha = config['alpha']
        else:
            alpha = config['alpha']*min(1,i/len(data_loader))

        loss_ita, loss_itm = model(image, caption, alpha=alpha, idx=idx)                  
        loss = loss_ita + loss_itm
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()    
        
        metric_logger.update(loss_itm=loss_itm.item())
        metric_logger.update(loss_ita=loss_ita.item())
        metric_logger.update(lr=optimizer.param_groups[0]["lr"])

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger.global_avg())     
    return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}  


@torch.no_grad()
def evaluation(model, data_loader, device, config):
    # test
    model.eval() 
    
    metric_logger = utils.MetricLogger(delimiter="  ")
    header = 'Evaluation:'    
    
    print('Computing features for evaluation...')
    start_time = time.time()  

    texts = data_loader.dataset.text   
    num_text = len(texts)
    text_bs = 256
    text_ids = []
    text_embeds = []  
    text_atts = []
    for i in range(0, num_text, text_bs):
        text = texts[i: min(num_text, i+text_bs)]
        text_input = model.tokenizer(text, padding='max_length', truncation=True, max_length=35, return_tensors="pt").to(device) 
        text_output = model.text_encoder(text_input.input_ids, attention_mask = text_input.attention_mask, mode='text')  
        text_embed = F.normalize(model.text_proj(text_output.last_hidden_state[:,0,:]))
        text_embeds.append(text_embed)   
        text_ids.append(text_input.input_ids)
        text_atts.append(text_input.attention_mask)
    
    text_embeds = torch.cat(text_embeds,dim=0)
    text_ids = torch.cat(text_ids,dim=0)
    text_atts = torch.cat(text_atts,dim=0)
    text_ids[:,0] = model.tokenizer.enc_token_id
    
    image_feats = []
    image_embeds = []
    for image, img_id in data_loader: 
        image = image.to(device) 
        image_feat = model.visual_encoder(image)   
        image_embed = model.vision_proj(image_feat[:,0,:])            
        image_embed = F.normalize(image_embed,dim=-1)      
        
        image_feats.append(image_feat.cpu())
        image_embeds.append(image_embed)
     
    image_feats = torch.cat(image_feats,dim=0)
    image_embeds = torch.cat(image_embeds,dim=0)
    
    sims_matrix = image_embeds @ text_embeds.t()
    score_matrix_i2t = torch.full((len(data_loader.dataset.image),len(texts)),-100.0).to(device)
    
    num_tasks = utils.get_world_size()
    rank = utils.get_rank() 
    step = sims_matrix.size(0)//num_tasks + 1
    start = rank*step
    end = min(sims_matrix.size(0),start+step)

    for i,sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)): 
        topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)

        encoder_output = image_feats[start+i].repeat(config['k_test'],1,1).to(device)
        encoder_att = torch.ones(encoder_output.size()[:-1],dtype=torch.long).to(device)
        output = model.text_encoder(text_ids[topk_idx], 
                                    attention_mask = text_atts[topk_idx],
                                    encoder_hidden_states = encoder_output,
                                    encoder_attention_mask = encoder_att,                             
                                    return_dict = True,
                                   )
        score = model.itm_head(output.last_hidden_state[:,0,:])[:,1]
        score_matrix_i2t[start+i,topk_idx] = score + topk_sim
        
    sims_matrix = sims_matrix.t()
    score_matrix_t2i = torch.full((len(texts),len(data_loader.dataset.image)),-100.0).to(device)
    
    step = sims_matrix.size(0)//num_tasks + 1
    start = rank*step
    end = min(sims_matrix.size(0),start+step)    
    
    for i,sims in enumerate(metric_logger.log_every(sims_matrix[start:end], 50, header)): 
        
        topk_sim, topk_idx = sims.topk(k=config['k_test'], dim=0)
        encoder_output = image_feats[topk_idx].to(device)
        encoder_att = torch.ones(encoder_output.size()[:-1],dtype=torch.long).to(device)
        output = model.text_encoder(text_ids[start+i].repeat(config['k_test'],1), 
                                    attention_mask = text_atts[start+i].repeat(config['k_test'],1),
                                    encoder_hidden_states = encoder_output,
                                    encoder_attention_mask = encoder_att,                             
                                    return_dict = True,
                                   )
        score = model.itm_head(output.last_hidden_state[:,0,:])[:,1]
        score_matrix_t2i[start+i,topk_idx] = score + topk_sim

    if args.distributed:
        dist.barrier()   
        torch.distributed.all_reduce(score_matrix_i2t, op=torch.distributed.ReduceOp.SUM) 
        torch.distributed.all_reduce(score_matrix_t2i, op=torch.distributed.ReduceOp.SUM)        
        
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Evaluation time {}'.format(total_time_str)) 

    return score_matrix_i2t.cpu().numpy(), score_matrix_t2i.cpu().numpy()


            
@torch.no_grad()
def itm_eval(scores_i2t, scores_t2i, txt2img, img2txt):
    
    #Images->Text 
    ranks = np.zeros(scores_i2t.shape[0])
    for index,score in enumerate(scores_i2t):
        inds = np.argsort(score)[::-1]
        # Score
        rank = 1e20
        for i in img2txt[index]:
            tmp = np.where(inds == i)[0][0]
            if tmp < rank:
                rank = tmp
        ranks[index] = rank

    # Compute metrics
    tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
    tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
    tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
  
    #Text->Images 
    ranks = np.zeros(scores_t2i.shape[0])
    
    for index,score in enumerate(scores_t2i):
        inds = np.argsort(score)[::-1]
        ranks[index] = np.where(inds == txt2img[index])[0][0]

    # Compute metrics
    ir1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
    ir5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
    ir10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)        

    tr_mean = (tr1 + tr5 + tr10) / 3
    ir_mean = (ir1 + ir5 + ir10) / 3
    r_mean = (tr_mean + ir_mean) / 2

    eval_result =  {'txt_r1': tr1,
                    'txt_r5': tr5,
                    'txt_r10': tr10,
                    'txt_r_mean': tr_mean,
                    'img_r1': ir1,
                    'img_r5': ir5,
                    'img_r10': ir10,
                    'img_r_mean': ir_mean,
                    'r_mean': r_mean}
    return eval_result


def main(args, config):
    utils.init_distributed_mode(args)    
    
    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)
    cudnn.benchmark = True

    #### Dataset #### 
    print("Creating retrieval dataset")
    train_dataset, val_dataset, test_dataset = create_dataset('retrieval_%s'%config['dataset'], config)  

    if args.distributed:
        num_tasks = utils.get_world_size()
        global_rank = utils.get_rank()            
        samplers = create_sampler([train_dataset], [True], num_tasks, global_rank) + [None, None]
    else:
        samplers = [None, None, None]
    
    train_loader, val_loader, test_loader = create_loader([train_dataset, val_dataset, test_dataset],samplers,
                                                          batch_size=[config['batch_size_train']]+[config['batch_size_test']]*2,
                                                          num_workers=[4,4,4],
                                                          is_trains=[True, False, False], 
                                                          collate_fns=[None,None,None])   
   

    #### Model #### 
    print("Creating model")
    model = blip_retrieval(pretrained=config['pretrained'], image_size=config['image_size'], vit=config['vit'], 
                             vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'], 
                             queue_size=config['queue_size'], negative_all_rank=config['negative_all_rank'])

    model = model.to(device)   
    
    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module   

    optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay']) 
    
    best = 0
    best_epoch = 0

    print("Start training")
    start_time = time.time()    

    for epoch in range(0, config['max_epoch']):    
        if not args.evaluate:        
            if args.distributed:
                train_loader.sampler.set_epoch(epoch)
                
            cosine_lr_schedule(optimizer, epoch, config['max_epoch'], config['init_lr'], config['min_lr'])
            
            train_stats = train(model, train_loader, optimizer, epoch, device, config)  
            
        score_val_i2t, score_val_t2i, = evaluation(model_without_ddp, val_loader, device, config)
        score_test_i2t, score_test_t2i = evaluation(model_without_ddp, test_loader, device, config)
    
        if utils.is_main_process():  
      
            val_result = itm_eval(score_val_i2t, score_val_t2i, val_loader.dataset.txt2img, val_loader.dataset.img2txt)  
            print(val_result)
                                
            if val_result['r_mean']>best:
                save_obj = {
                    'model': model_without_ddp.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'config': config,
                    'epoch': epoch,
                }
                torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))  
                best = val_result['r_mean']        
                best_epoch = epoch  
                
                test_result = itm_eval(score_test_i2t, score_test_t2i, test_loader.dataset.txt2img, test_loader.dataset.img2txt) 
                print(test_result)
            
            if args.evaluate:                
                log_stats = {**{f'val_{k}': v for k, v in val_result.items()},
                             **{f'test_{k}': v for k, v in test_result.items()},                  
                            }
                with open(os.path.join(args.output_dir, "evaluate.txt"),"a") as f:
                    f.write(json.dumps(log_stats) + "\n")     
            else:
                log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                             **{f'val_{k}': v for k, v in val_result.items()},
                             **{f'test_{k}': v for k, v in test_result.items()},  
                             'epoch': epoch,
                             'best_epoch': best_epoch,
                            }
                with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
                    f.write(json.dumps(log_stats) + "\n")   
                    
        if args.evaluate: 
            break

        dist.barrier()     
        torch.cuda.empty_cache()

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str)) 

    
if __name__ == '__main__':
    parser = argparse.ArgumentParser()     
    parser.add_argument('--config', default='./configs/retrieval_flickr.yaml')
    parser.add_argument('--output_dir', default='output/Retrieval_flickr')        
    parser.add_argument('--evaluate', action='store_true')
    parser.add_argument('--device', default='cuda')
    parser.add_argument('--seed', default=42, type=int)
    parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')    
    parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
    parser.add_argument('--distributed', default=True, type=bool)
    args = parser.parse_args()

    config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)

    Path(args.output_dir).mkdir(parents=True, exist_ok=True)
        
    yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))    
    
    main(args, config)