Edit model card

Model card error

There’s an error in the yaml metadata in this model card. If you’re the model author, please log in to check the list of errors and warnings.

BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa

This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6748
  • Accuracy: 0.72

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 57 0.8396 0.58
No log 2.0 114 0.8608 0.58
No log 3.0 171 0.7642 0.68
No log 4.0 228 0.8196 0.64
No log 5.0 285 0.6477 0.72
No log 6.0 342 0.6861 0.72
No log 7.0 399 0.6735 0.74
No log 8.0 456 0.6516 0.72
0.6526 9.0 513 0.6707 0.72
0.6526 10.0 570 0.6748 0.72

Framework versions

  • Transformers 4.10.2
  • Pytorch 1.9.0+cu102
  • Datasets 1.12.0
  • Tokenizers 0.10.3
Downloads last month
47
Hosted inference API
Text Classification
Examples
Examples
This model can be loaded on the Inference API on-demand.

Evaluation results