test_wnut_model
This model is a fine-tuned version of distilbert-base-uncased on the wnut_17 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2816
- Precision: 0.5219
- Recall: 0.3540
- F1: 0.4219
- Accuracy: 0.9427
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 6
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.3664 | 1.0 | 566 | 0.3082 | 0.4777 | 0.1687 | 0.2493 | 0.9354 |
0.1672 | 2.0 | 1132 | 0.2867 | 0.5395 | 0.3105 | 0.3941 | 0.9407 |
0.1265 | 3.0 | 1698 | 0.3171 | 0.5976 | 0.2753 | 0.3769 | 0.9413 |
0.116 | 4.0 | 2264 | 0.2914 | 0.5712 | 0.3420 | 0.4278 | 0.9431 |
0.0974 | 5.0 | 2830 | 0.2816 | 0.5219 | 0.3540 | 0.4219 | 0.9427 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.0
- Datasets 2.14.2
- Tokenizers 0.13.3
- Downloads last month
- 12
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for blambert/test_wnut_model
Base model
distilbert/distilbert-base-uncasedDataset used to train blambert/test_wnut_model
Evaluation results
- Precision on wnut_17test set self-reported0.522
- Recall on wnut_17test set self-reported0.354
- F1 on wnut_17test set self-reported0.422
- Accuracy on wnut_17test set self-reported0.943